
Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

1 

 

Distinguishing hypothetical systems of PS beads by Distinguishing hypothetical systems of PS beads by Distinguishing hypothetical systems of PS beads by Distinguishing hypothetical systems of PS beads by gggg((((ssss*) analysis of simulated AUC data to which *) analysis of simulated AUC data to which *) analysis of simulated AUC data to which *) analysis of simulated AUC data to which 
noise has been added, and quantifying the statistical significance of any observed distinguishabilitynoise has been added, and quantifying the statistical significance of any observed distinguishabilitynoise has been added, and quantifying the statistical significance of any observed distinguishabilitynoise has been added, and quantifying the statistical significance of any observed distinguishability    
 
INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    
 
This work examines the effects of noise on the distinguishability of mixtures subjected to 
analytical ultracentrifugation (AUC). The mixtures are hypothetical, the AUC is simulated, and the 
noise, which consists of both systematic and random parts, is generated artificially. For each 
mixture, the AUC is simulated just once. Replicate samples of a mixture are created by the 
addition of noise to the simulated AUC data of that mixture. The added noise is unique to each 
replicate, and the set of replicates that pertains to a particular mixture is defined as a treatment 
group. Thus, the artificially generated noise is the only source of variation within a treatment 
group. Across treatment groups, the implicit solvent composition is identical, and the initial 
concentrations of comparable solutes are as much alike as possible. To ensure that, in the 
absence of noise, the composition of the system is the only source of variation between treatment 
groups, for each mixture, the simulated AUC method is identical with respect to parameters that 
depend on temperature, rotor speed and data collection. Across treatment groups, the simulated 
AUC data are recorded at identical radial positions at identical times, and the signal-to-mass 
ratios are identical for comparable materials. 
 
A common observation is obtained for each replicate of each treatment group at three 
significantly different times. At each of the three times chosen for analysis, the population mean 
of the observations within one treatment group is compared to that within every other treatment 
group. One-way analysis of variance (ANOVA) is used to test whether there are any statistically 
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significant differences in the population means between any of the treatment groups at a given 
time. To quantify the statistical significance of a difference between any two treatment groups, a 
Bonferroni-adjusted t-test (2-tailed) is applied to pair-wise comparisons of the population means 
from different treatment groups at each time. Confidence intervals about the population means 
are determined and graphed to illustrate selected results from the Bonferroni-adjusted t-tests. 
 
The data presented here were generated by simulations (Moody, 2012a). The method of 
simulation is an implementation of an integral, finite-element solution to the relevant continuity 
equation (Moody, 2011). The method is built on that which Claverie, Dreux and Cohen (1975) 
described in their solution to the Lamm equation, but differs in several respects. To correctly 
implement their concentration dependence, the transport coefficients are defined as spatially-
independent parameters. To correctly evaluate the concentration-dependent transport 
coefficients at the time to be evaluated, the concentrations are calculated iteratively. By such an 
evaluation of the concentration-dependent transport coefficients at both the time already 
evaluated and the time being evaluated, the accuracy of each new set of concentrations is 
maximised. Computational artefacts are reduced by first calculating all concentrations in one 
order, then recalculating all concentrations in the opposite order, and averaging the results. For 
the cylindrical coordinate system of AUC, simpler results of integration are obtained by using 
one-half the square of the radial position, rather than the radial position, as the spatial parameter 
of the continuity equation. Additionally, a simple coupled-flow equation has been implemented. 
 
DATADATADATADATA 
 
An overview of the signal and the noise 
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For each treatment group, a single AUC simulation (Moody, 2011) yielded noise-free data at a set 
of radial positions and times. All such noise-free data were collected at the same simulated rotor 
speed of 60,000 RPM, and the same simulated temperature of 20.00°C. At each selected time, t, 
the noise-free data consist of the mass concentration (e.g. g/ml) of each potentially signal-
generating solute, k, at each selected radial position, r, within the hypothetical system. The data 
were always recorded at the same radial positions, and at all times, the radial extrema, which are 
the innermost and outermost radial boundaries of the system, were the same for each replicate of 
each treatment group. Each recorded solute concentration, ck, was multiplied by an appropriate 
signal-to-concentration ratio to best approximate what its contribution to the total signal would 
be, given the optical path-length (typically 0.3 cm or 1.2 cm) and the detection system being 
simulated. (Fringe displacement is the signal obtained from the Rayleigh interferometric (RI) 
detection system, which is that simulated here.) At a given time and at a given radial position, the 
sum of all such signal contributions is equal to the Noise-Free Signal (NFS). The NFS is the only 
concentration-dependent signal. Noise is defined as any contribution to the signal that is not 
concentration-dependent. 
 
For a specific treatment group at a specific time, the set of concentration-dependent signals from 
all radial positions (i.e., the NFS at all radial positions of a treatment group at a given time) is 
equivalent to a noise-free scan of the system at that time, insofar as that which is called a scan in 
a real experiment would yield a record of the signal at each of many radial positions at a specific 
time. Within each treatment group, a scan of a replicate sample consists of a common noise-free 
scan plus the noise specific to the replicate.  
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Time-independent noise (TIN) is generated by a summation of logarithmic and cosine functions 
of radial position. As the name implies, TIN does not vary with time. The TIN does vary with 
radial position, however, and at any given radial position, can vary from one replicate to another. 
Thus, for a given replicate within a given treatment group, the same set of TIN values is added to 
the noise-free scan from each time at which data are recorded. The same set of TIN values applies 
to each scan of a replicate because the data for each replicate are always recorded at the same set 
of r for each replicate of each treatment group at all times. For each replicate, the TIN values are 
limited to a realistic range and pattern that would be expected for the detection system being 
simulated.  
 
A unique set of radially independent noise (RIN) is generated for each data set of each replicate 
of each mixture. The noise, in this case, is an offset in the signal. As the name implies, RIN does 
not vary radially, so that, for a given replicate of a given treatment group at a given time, the 
same RIN value is added to the NFS at each radial position. The RIN does vary with time, 
however, and at any given time, can vary from one replicate to another. Thus, a different RIN 
value is added to each noise-free scan of each replicate. In each case, the RIN value is limited to a 
realistic range that would be expected for the detection system being simulated.  
 
Generally random noise (GRN) is noise that varies randomly with respect to both time and radial 
position. At a given time and radial position, the GRN also varies randomly from replicate to 
replicate. Thus, at each radial position, a different GRN value is added to the NFS from each time 
of each replicate. The GRN values are limited to a realistic range that would be expected for the 
detection system being simulated. 
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Making use of the preceding definitions of the NFS, TIN, RIN and GRN, for replicate h within 
treatment group i, the noise-modified signal, NMS, at scanned radial position r and scanned time t 
can be written as 

>?@A,B(C, D) = >F@A(C, D) + HI>A,B(C) + JI>A,B(D) + KJ>A,B(C, D), 
(1a)  
where the presence of r in parentheses indicates that the associated parameter is a function of r, 
the presence of t in parentheses indicates that the associated parameter is a function of t, the 
subscript i indicates that the associated parameter varies from one treatment group to another, 
and the subscript h indicates that the associated parameter varies within a treatment group from 
one replicate to another. 
 
With t, i and h each held fixed, a simulated scan is identical to the set of all ordered triples, (r, 
NMSi,h(r,t), Ni,h(r,t)), where r is a radial position at which a signal is recorded, and where the 
third entry of the ordered triple, 

>A,B(C, D) = HI>A,B(C) + JI>A,B(D) + KJ>A,B(C, D), 
(2a)  
is the total noise at radial position r and scanned time t for replicate h within treatment group i. 
(For the results from simulations, the third entry of the ordered triple is a placeholder that is 
only needed if data are analysed with software that, in conformity with the output from some 
optical systems of an analytical ultracentrifuge, requires three columns of data.) Equations 1b 
and 2b will present less ambiguous versions of Equations 1a and 2a, respectively. For now, 
however, the characteristics of the simulated AUC data are summarised in terms of the notation 
used in Equations 1a and 2a. 
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At a given time, t, the application of the same set of NFSi(r,t) to all replicates within a given 
treatment group, i, is made possible by the consistent recording of data at a common set of radial 
positions for all replicates, and by making the radial extrema the same for all replicates. Similarly, 
for a given replicate, h, of a given treatment group, i, the application of the same set of TINi,h(r) at 
all times is made possible by the consistent recording of data at a common set of radial positions 
at all times. In contrast, the choice of radial positions is irrelevant insofar as RINi,h(t) is concerned 
and is of marginal interest (Changing N and rj values to keep ∆MNO∗  constant) insofar as GRNi,h(r,t) 
is concerned. 
 
Some differences between real experimental data and the simulated AUC data used here 
 
To minimise the number of simulations required to generate data, and to eliminate the noise-free 
signals as a potential source of variability among replicates within a treatment group at any given 
time, the radial extrema were made identical for all replicates within a treatment group. 
Furthermore, to avoid arousing the suspicion that such a potential source of variation might 
account for any apparently significant differences between treatment groups, the radial extrema 
were made identical for all treatment groups. For the same reasons, the set of radial positions 
was made identical for all replicates of all treatment groups. Of these conditions, the invariance of 
radial extrema is admittedly unrealistic. 
 
Subtracting Ni,h(r,t) from NMSi,h(r,t) leaves NFSi(r,t). Within a given treatment group, i, at a given 
time, t, the set of NFSi(r,t) values at all r constitutes the noise-free scan for all replicates. Thus, 
within a treatment group, the set of all Ni,h(r,t) values comprises all of the differences between 
replicates. This latter characteristic differs slightly from that which would be expected in a real 
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experiment. As mentioned above, and as discussed in more detail later (An overview of the times 
chosen for analysis, and Simulation of TINi,h(r)), the radial extrema of a replicate are the 
innermost and outermost radial boundaries of the system. In any real experiment, the radial 
extrema would generally differ from one replicate to another, as a result of which, within a given 
treatment group, i, at a given time, t, the set of NFSi(r,t) values at all r would generally differ from 
one replicate to another, even if the data were recorded at the same radial positions for each 
replicate. 
 
In some real experiments, for a given replicate, h, within a given treatment group, i, the data may 
not be recorded at the same radial positions at each time, t, in which case, in place of r in 
Equations 1a and 2a, ri,h,t would apply, where ri,h,t denotes the radial position recorded at time t of 
replicate h within treatment group i. Such variability can be inherent to the detection system. 
Even a detection system, such as the RI-detection system simulated here, that can, within some 
small error inherent to the technology, repeatedly record data at one consistent set of radial 
positions may, following a recalibration, start repeatedly recording data at another consistent set 
of radial positions. Where unintentional and erratic, recording data at time-dependent radial 
positions would probably be considered disadvantageous. In some cases, however, it is 
conceivable that at least some advantage could be gained by imposing a systematic time 
dependence on the number and location of radial positions at which data are recorded. (For 
example, see Changing N and rj values to keep ∆MNO∗  constant.) 
 
An overview of the model systems from which the treatment groups are constructed 
 
The treatment groups are constructed from two previously described model systems that were 
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contrived to exhibit dramatic Johnston-Ogston effects in AUC simulations (Moody, 2012a), 
selected data from which were subjected to analysis in a subsequent paper (Moody, 2012b). Each 
of the two previously described model systems constitutes one of the treatment groups. Every 
other treatment group consists of a mixture of the two previously described model systems.  
 
The two previously described model systems are identical with respect to species, but 
distinguishable with respect to components. Both systems model buffered, part aqueous, part 
heavy-water solutions of polystyrene (PS) beads that, by varied substitutions of 1H with 
deuterium, are polydisperse with respect to specific gravity (Moody, 2012a).  
 
(The density of each solute particle is equal to its mass divided by its volume, and the ratio of that 
density to the density of water (at specified conditions of pressure and temperature) is the 
specific gravity of the particle. Likewise, the local density of the solution is equal to its local mass 
divided by its local volume, and the ratio of that density to the density of water (at specified 
conditions of pressure and temperature) is the local specific gravity of the solution.) 
 
In each system, the PS beads are defined as the solutes, and the buffer is defined as the implicit 
solvent (Moody, 2012a). The solvent is treated as being incompressible, as is each solute particle. 
The transport coefficients of each solute are concentration-dependent (Moody, 2012a: Equations 
5 to 18). The coupled-flow sedimentation (Moody, 2012a: Equations 27 to 30) and diffusion 
(Moody, 2012a: Equations 31 and 32) coefficients are equal to 1 for each type of solute with 
respect to itself, and are equal to 0 for each type of solute with respect to another (Moody, 2012a: 
Table 2, case 0). All temperature-dependent system properties, such as solution density, 
viscosity, specific gravities, transport coefficients and second virial coefficients, are based on an 
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expectation that the systems are maintained at 20.00°C (Moody, 2012a). Thus, 20.00°C, which 
equates to 293.15 K on the absolute temperature scale, is the hypothetical temperature of all of 
the simulated experiments. The simulated rotor speed of 60,000 RPM was treated as having been 
instantaneously achieved beginning at time t0 = 0 s. 
 
In each system, 26 of the 27 model PS beads are defined as isotropic spheres of 30 nm diameter, 
and a dimer of the most positively-buoyant and the most negatively-buoyant of these defines the 
remaining model PS bead, which is neutrally buoyant with respect to the implicit solvent at 
20.00°C.  
 
Together, the most positively-buoyant species, H, the most negatively-buoyant species, L, and the 
dimer, LH, account for 99% of the total mass concentration, c = 0.1 g/ml, of all PS-bead solutes in 
either system. Thus, the collection of all H, L and LH particles are described as the high-
concentration solutes, and the collection of all particles from the other 24 PS-bead species are 
described as the low-concentration solutes. In the absence of concentration gradients, the 
molarity of species LH is half that of species L or H, while species L and H are equimolar, so that 
cL/ML = cH/MH = 2(cLH/MLH), where ML = 8,964,823 g/mol MH = 9,462,869 g/mol and MLH = 
18,427,691 g/mol are the molar masses of species L, H and, LH, respectively (Moody, 2012a: 
Table 1), and where cL, cH and cLH are the mass concentrations of species L, H and LH, 
respectively. Given that MLH = ML + MH, where both cL/ML = cH/MH = 2(cLH/MLH) and cL + cH + 
cLH = 0.99c hold, as they initially do prior to the development of concentration gradients 
anywhere in the system, cL = 0.99(2c/3)(ML/MLH), cH = 0.99(2c/3)(MH/MLH) and cLH = 
(cL + cH)/2 = 0.99(c/3) throughout the system. Thus, with c = 0.1 g/ml, the initially uniform 
concentrations of the high-concentration solutes, L, H and LH, respectively, are cL = 3.211E-02 
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g/ml, cH = 3.389E-02 g/ml and cLH = 3.300E-02 g/ml.  
 
The total concentration of each low-concentration solute is (0.001 g/ml)/24 in both systems. 
Among the 24 low-concentration solutes, 12 are positively-buoyant and 12 are negatively-
buoyant (Moody, 2012a: Table 1) with respect to the implicit solvent at 20.00°C. The solute 
concentrations, the basic transport parameters (Moody, 2012a: Table 1) and the parameters that 
mediate concentration dependence (Moody, 2012a: Equations 14 to 18) are such that each of the 
low-concentration solutes exhibits Johnston-Ogston effects. 
 
In one system, each of the 27 model PS beads, including L, H and LH, is a single-species 
component. In the other system, 24 of the model PS beads are single-species components, while L 
is a two-species component, H is a two-species component, and LH is the second species of both 
two-species components, for a total of 27 solute species among 26 components. In both systems, 
each of the low-concentration solutes is a single-species component.  
 
For the system in which 26 components encompass 27 solute species, KA = 30.325 ml/g is the 
association constant applied to the formation of LH from L and H. As previously described 
(Moody, 2012a), this value of KA was calculated to ensure that, in the absence of concentration 
gradients, at 20.00°C, the concentrations of L, H and LH in the system with 27 solute species 
among 26 components would be everywhere equal to the concentrations of L, H and LH, 
respectively, in the system with 27 single-species components. Additionally, in the absence of 
concentration gradients, the concentration of each of the remaining 24 solute species in one 
system is everywhere equal to that in the other system. Thus, at 20.00°C, the two systems are 
indistinguishable prior to the formation of concentration gradients.  
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For the system in which L, H and LH are single-species components, KA, the association constant 
that would otherwise apply to the formation of LH from L and H, is undefined, and henceforth, 
the two systems are identified by whether the KA for the formation of LH from L and H is 
undefined or is equal to 30.325 ml/g at 20.00°C.  
 
In the system for which KA = 30.325 ml/g at 20.00°C, the applied forward rate constant is kfor = 
30,000 [ml/g]/s, and thus the applied reverse rate constant is krev = kfor/KA ≅ 989.277 s. Relative 
to the time increments applied to simulate AUC in this study, these rate constants are high 
enough to ensure the rapid equilibration of the chemical reaction linking L, H and LH. Thus, with 
the development of gradients in the concentrations of L, H and LH, the two systems behave 
differently enough to be easily distinguished at many points in time. In this study, the challenge 
lies in distinguishing simulated AUC data from similar treatment groups, each being a mixture of 
the two model systems, after realistic noise has been added to the data at each of three widely 
spaced points in time.  
 
An overview of the treatment groups and the Noise-Free Signals 
 
At a given radial position at a given time, the noise-free signal (Equation 4) is the product of the 
concentration of solutes found only in the sample, the specific fringe displacement of those 
solutes, and the optical path-length. For each replicate of each treatment group considered here, 
an optical path-length of L = 0.3 cm was used to calculate the noise-free signal. 
 
Each treatment group consists of a mixture of the two previously described model systems 
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(Moody, 2012a). For each treatment group, the total mass concentration of all hypothetical PS 
beads is c = 0.1 g/ml, which is the same as that of the pure systems in the previous studies 
(Moody, 2012a and 2012b). For each species of PS bead, the signal-to-mass ratio is treated as 
being the same. Thus, each species of PS bead is assigned the same specific fringe displacement of 
kλ = 2,500 fringe/[cm∙g/ml], where 1 fringe is the unit of the signal obtained from the RI 
detection system, for which λ is the nominal wavelength of the light source. 
 
For sample materials of a given composition, the specific fringe displacement is directly 
proportional to the refractive index increment and inversely proportional to λ (Moody, 2011: 
Equation E1). In Equation 4, the proportionality of the noise-free signal to the optical path-length 
stems from the proportionality of kλ,q,a to 1/λ. As the refractive index increment is a function of λ, 
solvent properties, and such system properties as temperature, few experimental parameters can 
be altered without affecting kλ,q,a. 
 
The refractive index increment of the PS-bead solutions was calculated for a temperature of 
20.00°C and a wavelength of λ = 6.75E-5 cm, which is the nominal wavelength of the RI detection 
system being simulated. (See Data that formed the basis of GRNi,h(r,t).) The implicit solvent (see 
below) of the PS-bead solutions was modelled as an aqueous buffer consisting of 71.23% D2O, 
0.15 M NaCl, 20 mM NH4HCO3 and pH 7.0 at 20.00°C (Moody, 2012a), where the amount of D2O is 
given in volume-percent. The calculation of kλ was then contrived to yield a fairly round number 
that, aside from neglecting (for the sake of a little simplicity) the effects of 1H-to-D substitution 
on its value, was fairly evidence-based. 
 
Based on such measurements for similar polymers with 0% 1H-to-D substitution, the refractive 
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index of each PS-bead at 20.00°C was estimated as nPS = 1.50000, despite the expectation that the 
true value would decrease slightly with increasing 1H-to-D substitution. Based on such 
measurements for similar aqueous buffers with 0% D2O, the refractive index of the model buffer 
at 20.00°C and λ = 6.75E-5 cm was estimated as n0 = 1.33125, despite the expectation that the 
true value would decrease slightly with increasing D2O content. The refractive index increment of 
the PS-bead solutions at 20.00°C and λ = 6.75E-5 cm was estimated as (nPS - n0)/(1 g/ml) = 
0.16875, despite the expectation that its true value would only be found in the limit as the PS-
bead concentration approached zero, and would also depend on the level of 1H-to-D substitution 
among the PS-beads. The specific fringe displacement of the PS-bead solutions at 20.00°C and λ = 
6.75E-5 cm was then calculated as kλ = 0.16875/λ = 2,500 fringe/[cm∙g/ml]. 
 
(For the steadfastly fastidious, simply imagine that compensating but proprietary and thus 
undisclosed chemical substitutions were applied during the manufacture of each PS-bead 
component, such that, regardless of the extent of 1H-to-D substitution, kλ =2,500 
fringe/[cm∙g/ml] for each such component in the model buffer at 20.00°C and λ = 6.75E-5 cm. 
Warning: Do not eat the PS-beads. And don’t drink the buffer.) 
 
RI detection requires a reference system for each sample system. At any given radial position, the 
signal is equal to the fringe displacement of the sample relative to the reference. Where the 
sample is identical to the reference, the expected fringe displacement is zero, as c, the 
concentration of components not found in the reference, is zero. Where the sample consists of the 
components of the reference plus the above-described hypothetical PS beads at c = 0.1 g/ml, and 
where the optical path-length through both the sample and the reference is L = 0.3 cm, the 
expected signal would be cLkλ = 75 fringe. 
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In simulated AUC, the reference is implicit. For each treatment group of this study, the implicit 
reference is that which applied to the pure systems in the previous studies (Moody, 2012a and 
2012b). The implicit reference system is treated as being devoid of PS beads, and all components 
other than PS beads are treated as being at equal chemical potential in the sample and reference 
systems, so that, at any given radial position at any given time, only the PS beads contribute to 
the NFS. In the best case of a real AUC experiment, the reference system would be identical to the 
dialysate that would be obtained after the sample system had been dialysed to equilibrium 
against the buffer of interest at the temperature of the AUC experiment. Such a reference system 
can be defined as the implicit solvent of the sample system. (The composition of the implicit 
solvent of this study is that given in the preceding calculation of the specific fringe displacement.) 
 
Four treatment groups were subjected to intensive analysis. Two of the treatment groups consist 
of the pure systems of the previous studies (Moody, 2012a and 2012b), and one treatment group 
consists of a one-to-one mass-to-mass mixture of those previously described systems. On a mass-
to-mass basis, the other treatment group is a 99-to-1 mixture of the previously described 
systems, with the major part of the mixture coming from the system for which KA = 30.325 ml/g 
at 20.00°C. 
 
The treatment groups and the number of their replicates were selected with the goal of detecting 
a 1% difference in composition at a confidence level of 95%, while also checking the significance 
of differences between treatment groups of widely divergent compositions. To this end, nine 
replicates were included in each treatment group that predominantly consisted of the system for 
which KA = 30.325 ml/g at 20.00°C, and three replicates were included in each treatment group 
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that consisted of 50% or more of the system for which KA is undefined at 20.00°C. Additionally, 
data from three widely divergent times were analysed to probe the time dependence of any 
differences between treatment groups. 
 
An overview of the times chosen for analysis 
 
The transport behaviour of the solutes is used to identify which AUC data might be especially 
worthy of analysis. At any given time during the simulated AUC, a solute exhibits net transport 
wherever the specific gravity of its particles differs from the specific gravity of the surrounding 
solution. Such net transport is centripetally directed where the specific gravity of the solute 
particles is less than the specific gravity of the surrounding solution, and centrifugally directed 
where the specific gravity of the solute particles is greater than the specific gravity of the 
surrounding solution. 
 
The innermost and outermost radial positions of the system are its radial extrema. Whichever 
way the net transport of a solute is directed, it can be viewed as moving away from an apparent 
radial extremum of origin and towards an apparent radial extremum of accumulation. Where 
centripetally directed, the outermost radial position of the system is the apparent radial 
extremum of origin, while the innermost radial position of the system is the apparent radial 
extremum of accumulation. Where centrifugally directed, the innermost radial position of the 
system is the apparent radial extremum of origin, while the outermost radial position of the 
system is the apparent radial extremum of accumulation.  
 
Where a solute exhibits net transport, a gradient develops in its concentration. While still distinct 
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from the radial extrema of accumulation, the concentration gradient of a solute is regarded as its 
boundary. Where the concentration of a solute increases with r, the boundary of that solute can 
be viewed as centrifugally directed. Where the concentration of a solute decreases with r, the 
boundary of that solute can be viewed as centripetally directed. Thus, at a given radial position 
and time, whichever way the net transport of a solute is directed, so too is the boundary of that 
solute directed.  
 
The index ϵ is applied to times at which useful data are acquired (Equation 1b). For each 
treatment group, such data from three time points were chosen for analysis. The time points 
were chosen to be late enough that each centripetally or centrifugally directed boundary had 
cleared its radial extremum of origin, but early enough that no centripetally or centrifugally 
directed boundary had yet begun to merge with its radial extremum of accumulation. The earliest 
and latest data sets that meet these criteria, and that also exhibit minimal boundary overlap, 
were sought. The data set that meets these criteria while also exhibiting maximal boundary 
overlap was sought for the remaining time point. Accordingly, the data from tϵ = 2160 s (36 min), 
tϵ = 3060 s (51 min) and tϵ = 3960 s (66 min) were chosen for analysis (Table 17). 
 
The data set from the intermediate time point of tϵ = 3060 s (51 min) is that which coincides 
with the approximate maximum extent of overlap between the centripetally and centrifugally 
directed boundaries. The time of such overlap had previously been noted as that at which, within 
one treatment group, the results of data analysis can be the most divergent of all times examined 
(Moody, 2012b), and was included here to check whether boundary overlap adversely affects the 
distinguishability of one treatment group from another. 
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For details regarding the AUC method that might have been applied had the systems been real, 
see IMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOL. 
 
DATA ANALYSIS: METHODDATA ANALYSIS: METHODDATA ANALYSIS: METHODDATA ANALYSIS: METHOD    
 
The simulated AUC data, with and without the artificially generated noise described above, were 
analysed in terms of the apparent sedimentation coefficient, s*, and its distribution function, 
g(s*). In this work, g(s*) was determined by a variation of the most direct method presented in a 
prior work (Moody, 2012b), in which a derivation of g(s*) from the continuity equation 
pertaining to AUC, an expression of g(s*) in terms of Dirac delta functions, and some practical 
methods by which g(s*) may be determined from experimentally obtained data, are described in 
detail, along with some of the history of such analysis. The method of analysis employed here is 
largely described in this section. Some aspects of the method are covered over the course of its 
application in subsequent sections, where tables and figures facilitate the use of examples. 
 
For each replicate of each treatment group, the AUC data from three selected times were 
analysed. To correct for time-independent noise, for each replicate, the earliest data recorded 
were subtracted, radial-position-by-radial-position, from the data subsequently recorded at each 
of the three selected times. To show such operations clearly in equations, indices are assigned to 
both r and t. The index j, for which 1 ≤ j ≤ N, is applied to the radial positions at which usable 
data are found, of which there are N in total. (Such indexing is discussed at length with respect to 
Equations 31 and 32.) The index ϵ is applied to times at which useful data are acquired. Useful 
data are defined as data that are fully described 

>?@A,BcCd , Def = >F@AcCd , Def + HI>A,BcCdf + JI>A,B(De) + KJ>A,BcCd, Def, 
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(1b) 
of which the total noise is given by 

>A,BcCd, Def = HI>A,BcCdf + JI>A,B(De) + KJ>A,BcCd, Def. 
(2b)  
It is the application of the indices for radial position and time that makes Equations 1b and 2b 
less ambiguous forms of Equations 1a and 2a, respectively. The earliest recorded time at which 
useful data are acquired is specially denoted as tϵ = tα. 
 
For each treatment group considered here, at radial position rj (Equation 32) and time tϵ (Table 
17), NFSi(rj,tϵ) is invariant across replicates, for which all variation is found in Ni,h(rj,tϵ). Thus, for 
each replicate of any given treatment group, i, considered here, at radial position rj and time tϵ, 
the total concentration of all solute species is 

hAcCd , Def = i hj
k

jlm , 
(3)  
where n is the total number of solute species. 
 
In general, the expected signal is identical to the noise-free signal. For each replicate of each 
treatment group considered here, the relationship between the noise-free signal and the total PS-
bead concentration is the same, being given, for treatment group i at radial position rj and time tϵ, 
by 

>F@AcCd , Def = nophAcCd, Defqr, (4) where kλ = 2,500 fringe/[cm∙g/ml] is the specific fringe displacement, ci(rj,tϵ) is the total 
concentration of all solute species, and L = 0.3 cm is the optical path-length. (Also see Equation 
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154 and the associated discussion.) While the expected signal must be equal to NFSi(rj,tϵ), the 
observed signal need not be equal to NMSi,h(rj,tϵ) necessarily. If the observed signal does equal 
NMSi,h(rj,tϵ), it is deemed useful data. 
 
Various optical effects, some of which can be categorised as noise, cause the observed signal to 
differ from the expected signal. Useful data are not obtained when and where some of these 
optical effects overwhelm the analytical effort to extract interpretable information about crucial 
characteristics of the expected signal. For example, noise due to reflections from system 
boundaries render the observed signal from affected radial positions uninterpretable. Worse, 
perhaps, is the potential for the observed signal to be misinterpreted, as can exist where solute 
concentrations lie outside the dynamic range of the detection system. Such bedevilling optical 
effects as these are assumed to be nonexistent, or at least negligible, where Equations 1b, 2b and 
4 apply.  
 
With the signal at radial position rj and time tϵ denoted as NMSi,h(rj,tϵ) for replicate h of treatment 
group i, and the signal at radial position rj and the earliest recorded time tα denoted as 
NMSi,h(rj,tα) for replicate h of treatment group i, the difference at radial position rj is 
NMSi,h(rj,tϵ) - NMSi,h(rj,tα). For replicate h of treatment group i at time tϵ, the set of all differences, 
NMSi,h(rj,tϵ) - NMSi,h(rj,tα), is used to analyse the system as a collection of hypothetical solutes, 
each of which is defined as an imaginary, thermodynamically ideal, non-diffusing solute 
characterised by an apparent sedimentation coefficient and a constant of concentration.  
 
At time tϵ (expressed in seconds), each radial position, rj, is transformed to two values of the 
apparent sedimentation coefficient,  
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MNO∗ = 1stDe uv wCdCxy, 
(5)  
where r0 is either equal to the innermost radial extremum, rm, or the outermost radial extremum, 
rb (Moody, 2012b), and where, for the N radial positions at which usable data exist, the MNO∗  values 
are indexed by 

ze = { | }~C Cx = C� , �ℎ�C� C� > Cd| + > }~C Cx = C�, �ℎ�C� C� < Cd�  �v MNO∗ = 1stDe uv wCdCxy, 
(6) 
the sub-index of which, ϵ, being the index applied to time, serves as a reminder that, except 
where MNO∗  and MN��O∗  are both zero, MNO∗ ≠ MN��O∗ , because tϵ ≠ tτ≠ϵ. (The subscripts associated with 
the radial extrema stem from the coincidence of rm with the meniscus of the system, and the 
coincidence of rb with the base of the system.) Thus, by Equation 6, the first N values of the index, 
φϵ, are given by φϵ = j for r0 = rb, where rb > rj for all j, and the second N values of the index, φϵ, 
are given by φϵ = j + N for r0 = rm, where rm < rj for all j. 
 
For convenience, tϵ is sometimes expressed in terms of minutes, and is frequently denoted by the 
time in minutes, throughout the latter parts of this work. To calculate MNO∗  in dimensions of 
seconds, however, tϵ must be expressed in seconds in Equation 5, where the angular velocity, ω 
(Equation 55), is assumed to be expressed in inverse seconds. Equation 5 also requires that rj and 
r0 share the same unit of length, with the centimetre being that chosen to express all radial 
positions in this work. 
 
In Equation 5, setting r0 equal to the innermost radial extremum, rm, yields the set of all MNO∗  < 0. 
Conversely, setting r0 equal to the outermost radial extremum, rb, yields the set of all MNO∗  > 0. If it 
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were possible for rj to equal either extremum represented by r0, then MNO∗  would equal 0 when rj 
equalled r0. However, in a real experiment, or in a simulation meant to generate realistic results, 
the radial extrema, rm and rb, lie outside the radial range of usable data, so that rb > rj > rm holds 
for each value of rj. Thus, �MNO∗ � > 0 for all rj values at which usable data exist. It therefore follows 
that, if the number of rj values at which usable data exist is N, the number of MNO∗  values at which 
usable data exist is 2N. 
 
With respect to Equation 5, it is also worth noting that, as MNO∗  is inversely proportional to tϵ, MNO∗  at 
tϵ = 0 s is best evaluated by taking the limit as at tϵ approaches 0 s from above, in which case, MNO∗  
approaches -∞ for r0 = rb and MNO∗  approaches +∞ for r0 = rm. 
 
For data obtained by the RI detection system, the N of 1 ≤ j ≤ N is time-independent, because, 
within the error of the measurement, and barring unforeseen disasters such as the loss of sample 
or reference volumes to the combined assaults of vacuum pumps and centrifugal forces, time 
does not change the radial positions, denoted as rj, at which usable data are found for a given 
replicate of a given treatment group. The time-independence of N ensures that the set of all φϵ is 
also time-independent. 
 
A catastrophic loss of sample or reference volumes would warrant the rejection of the affected 
replicate, so the only acceptable source of a time dependence in N would be a detection system 
that records data at time-dependent radial positions. Data recorded at time-dependent radial 
positions would not be suitable for the analytical step described next, which consists of the point-
by-point subtraction of data recorded at one time from data recorded at another time (Equation 
7). With the replacement of N by a time-dependent counterpart, Nϵ, however, Equation 6 would 
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be applicable to data recorded at time-dependent radial positions. 
 
Point-by-point subtraction of data recorded at one time from data recorded at a later time 
 
Provided that, as is the case here, the set of radial positions is identical for all replicates of all 
treatment groups, at each radial position, rj, the data at one time can be subtracted from the data 
at any other time without resorting to extrapolation. Given such a commonality of radial 
positions for all data sets, within the data sets for a given replicate of a given treatment group, 
subtracting NMSi,h(rj,tα) from NMSi,h(rj,tϵ) unambiguously eliminates TINi,h(rj) from the 
difference. 
 
The weight-average apparent sedimentation coefficient within 5E-13 s < �MNO∗ � < 10.625E-13 s, 
MA,B,e∗  (Equation 13), is the observation obtained for each replicate, h, of each treatment group, i, at 
each time, tϵ, chosen for analysis. As will be shown (Equation 8), a differential step in the 
calculation of MA,B,e∗  ensures that neither radially independent noise nor any radially independent 
portion of the signal contributes anything to the observation To also eliminate the contribution of 
time-independent noise to the observation, for each replicate, h, of each treatment group, i, MA,B,e∗  
is calculated from the set of differences (Equation 7), NMSi,h(rj,tϵ) - NMSi,h(rj,tα), at each radial 
position, rj, where NMSi,h(rj,tϵ) is the signal at a time, tϵ, of interest analytically, while NMSi,h(rj,tα) 
is the signal at the earliest recorded time, tα. As such, the signal, NMSi,h(rj,tα), at the earliest 
recorded time, tα, is treated as if it applied to time tϵ, even though, with tϵ ≠ tα≠ϵ, MNO∗ ≠ MN��O∗  at φϵ 
= φα≠ϵ. However for tϵ not much greater than tα, NMSi,h(rj,tϵ≅α) is weakly time-dependent at most 
radial positions. Thus, it is argued that NMSi,h(rj,tα) can be treated as if it applied to any time, tϵ, at 
which data are recorded. 
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The applicability of NMSi,h(rj,tα) to data from later times can be justified by considering any time, 
tβ, within tα ≤ tβ ≤ tγ, where tα to tγ is an early time period during which much of the system has 
yet to develop concentration gradients. Within tα ≤ tβ ≤ tγ, NMSi,h(rj,tβ) = kλ[ci(rj,tβ)]L + Ni,h(rj,tβ), 
where kλ and L are constants (Equation 4), while away from unusable data near the extrema, 
ci(rj,tβ) is independent of rj and only weakly dependent on tβ. Thus, within the range of radial 
positions where usable data are found, kλ[ci(rj,tβ=α)]L makes no contribution to MA,B,e∗  (Equation 
13). Away from the extrema, most of the time dependence in NMSi,h(rj,tβ) is found in Ni,h(rj,tβ), of 
which, by Equation 2b, TINi,h(rj) is the time-independent noise, RINi,h(tβ) is the radially 
independent noise and GRNi,h(rj,tβ) is the generally random noise. Of the three parts of 
Ni,h(rj,tβ=α), neither TINi,h(rj) nor RINi,h(tβ=α) makes any contribution to MA,B,e∗ . Due to the variation 
of GRNi,h(rj,tβ) with both radial position and time, GRNi,h(rj,tβ=α) does make systematic 
contributions to MA,B,e∗ . As is shown in a later section (Mitigation of data clipping), however, the 
systematic contributions that GRNi,h(rj,tβ=α) makes to MA,B,e∗  can be minimised by excluding from 
analysis those data for which the absolute value of the difference (Equation 7), 
NMSi,h(rj,tϵ) - NMSi,h(rj,tα), is small enough to be attributable to noise. 
 
Letting Y denote the difference between two signals separated by time only, for radial position rj 
of replicate h of treatment group i, the equation 

�A,BcCd , Def = >?@A,BcCd, Def − >?@A,BcCd, D�f 
(7) 
can be written for the difference between the signals at times tϵ and tα. (Equation 111 is a more 
detailed expression of Equation 7.) The set of all such differences for replicate h of treatment 
group i is transformed by remapping Yi,h(rj,tϵ) versus rj to Yi,h(MNO∗ ) versus MNO∗ , where MNO∗  is 
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calculated from rj and tϵ using Equation 5.  
 
Despite its being equal to the difference between the signals at two times, tϵ and tα, Yi,h(MNO∗ ) is 
treated as if it pertained solely to time tϵ, and as such, the partial derivative of Yi,h(MNO∗ ) is taken 
with respect to MNO∗  at constant time, with tϵ effectively being the time held constant. 
 
As the set of rj values is finite, the set of MNO∗  values is finite at each time, tϵ. Thus, any partial 
derivative with respect to rj or MNO∗  must be approximated if it cannot be evaluated analytically. 
The approximation used to evaluate the partial derivative of Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ 
is given by 

���A,BcMNO∗ f�MNO∗ �� ≅ 12 ��A,BcMNO∗ f − �A,BcMNO�m∗ fMNO∗ − MNO�m∗ + �A,BcMNO�m∗ f − �A,BcMNO∗ fMNO�m∗ − MNO∗ � ≡ ∆�A,BcMNO∗ f∆MNO∗  
(8a) 
at φϵ within 1 < φϵ < 2N, 

���A,BcMNOlm∗ f�MNO∗ �� ≅ �A,BcMNO�m∗ f − �A,BcMNO∗ fMNO�m∗ − MNO∗ ≡ ∆�A,BcMNOlm∗ f∆MNOlm∗  
(8b) 
at φϵ = 1, and  

���A,BcMNOlt�∗ fMNO∗ �� ≅ �A,BcMNO∗ f − �A,BcMNO�m∗ fMNO∗ − MNO�m∗ ≡ ∆�A,BcMNOlt�∗ f∆MNOlt�∗  
(8c) 
at φϵ = 2N. 
 
Equation 8 describes the differentiation method of Origin 6.0(Microcal Software, Inc), which was 
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applied to the signal-versus-transformed-radial-position data, in the form of Yi,h(MNO∗ ) plotted as a 
function of MNO∗ , to evaluate the partial derivative of Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ.  
 
As TINi,h(rj) is identical in NMSi,h(rj,tα) and NMSi,h(rj,tϵ) (Equation 1b), TINi,h(rj) vanishes in the 
difference, NMSi,h(rj,tϵ) - NMSi,h(rj,tα), that yields Yi,h(rj,tϵ) (Equation 7). Therefore, TINi,h(rj) is 
absent from Yi,h(MNO∗ ). Thus, TINi,h(rj) does not contribute anything to the partial derivative of 
Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ (Equation 8). (Equation 107 is a formal expression of this 
characteristic of TINi,h(rj).) 
 
As both RINi,h(tα) and RINi,h(tϵ) are constant with rj, both are also constant with MNO∗ . Therefore, 
RINi,h(tα) and RINi,h(tϵ) merely contribute an MNO∗ -independent offset, equal to RINi,h(tϵ) - RINi,h(tα) 
(Equations 1b and 7) to Yi,h(MNO∗ ). Thus, neither RINi,h(tα) nor RINi,h(tϵ) contribute anything to the 
partial derivative of Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ (Equation 8). (Equation 108 is a formal 
expression of the difference, RINi,h(tϵ) - RINi,h(tα).) 
 
As both GRNi,h(rj,tα) and GRNi,h(rj,tϵ) are randomly distributed with respect to rj, neither 
GRNi,h(rj,tα) nor GRNi,h(rj,tϵ) makes any systematic contribution to Yi,h(rj,tϵ). Rather, their 
contribution to Yi,h(rj,tϵ) consists of the difference, GRNi,h(rj,tϵ) - GRNi,h(rj,tα) (Equations 1b and 7), 
that, with respect to rj, is found to be randomly distributed with a standard deviation 
approximately equal to 20.5 times the standard deviation in either GRNi,h(rj,tα) or GRNi,h(rj,tϵ). (As 
will be discussed with respect to Figure 5 and Table 14, every set of GRNi,h(rj,tϵ) values has a 
standard deviation of approximately 0.01400 fringe.) Consequently, the standard deviation of the 
randomly distributed noise of Yi,h(rj,tϵ) is about 20.5-fold greater than that of either NMSi,h(rj,tα) or 
NMSi,h(rj,tϵ). (Equation 109 is a formal expression of the difference, GRNi,h(rj,tϵ) - GRNi,h(rj,tα), and 
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the standard deviation of such differences is discussed in Mitigation of data clipping.) 
 
Upon transformation of Yi,h(rj,tϵ) versus rj to Yi,h(MNO∗ ) versus MNO∗ , the randomly distributed noise 
of the former with respect to rj becomes the randomly distributed noise of the latter with respect 
to MNO∗ . The greater the randomly distributed noise of Yi,h(rj,tϵ) is with respect to MNO∗ , the more 
erratic the partial derivative of Yi,h(MNO∗ ) is with respect to MNO∗  at time tϵ (Equation 8). 
Nevertheless, if the partial derivative of Yi,h(MNO∗ ) at time tϵ were taken with respect to the index 
(Equation 6), φϵ, for which Δφϵ, the increment between consecutive values, is always equal to 1, 
the random noise of that approximated derivative, ∆¡¢,£c¤¥O∗ f∆NO  ≅ ¦§¡¢,£c¤¥O∗ f§NO ¨� , would be normally 
distributed with a 20.5-fold smaller standard deviation than that in the random noise of Yi,h(MNO∗ ). 
As such, there is no cost of eliminating TINi,h(rj) and RIN by subtraction to first obtaining Yi,h(MNO∗ ), 
followed by approximated differentiation to then obtain ∆¡¢,£c¤¥O∗ f∆NO . The parameter of interest is not 
∆¡¢,£c¤¥O∗ f∆NO , however. (The standard deviation of such approximated derivatives is discussed in 
Mitigation of data clipping.) 
 
If, ∆MNO∗ , the increment between consecutive values of MNO∗ , did not change over the full range of 
MNO∗ , the approximated derivative, ∆¡¢,£c¤¥O∗ f∆¤¥O∗  ≅ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� , would differ from ∆¡¢,£c¤¥O∗ f∆NO  by an MNO∗ -
independent magnitude, ∆NO∆¤¥O∗ . In the simulated AUC data presented here, and in real data of the 
sort simulated, the values of rj are such that, upon the application of Equation 5, ∆MNO∗  will be a 
function of MNO∗ , in addition to which, ∆MNO∗  will be a function of tϵ. Thus, the random error in 
∆¡¢,£c¤¥O∗ f∆NO  becomes systematic error in ∆¡¢,£c¤¥O∗ f∆¤¥O∗ , as ∆¡¢,£c¤¥O∗ f∆¤¥O∗  is equal to ∆NO∆¤¥O∗  times ∆¡¢,£c¤¥O∗ f∆NO , where 
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∆NO∆¤¥O∗  depends on MNO∗  and tϵ. As Δφϵ remains equal to 1, ∆MNO∗  is the sole source of the dependence 
on MNO∗  and tϵ. (See discussions following Equations 9 and 13.) 
 
The nonredundant derivative and the elimination function 
 
The application of Equation 8 yields w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  as the apparent signal that is subjected to further 
analysis. The nonredundant derivative of Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ for replicate h of 
treatment group i is 

©A,BcMNO∗ f = ���A,BcMNO∗ f�MNO∗ �� − �A,BcMNO∗ f, 
(9a) 
where the elimination function, 

�A,BcMNO∗ f =
ª«¬
« 0 �} MNO∗ ���A,BcMNO∗ f�MNO∗ �� ≥ 0

���A,BcMNO∗ f�MNO∗ ��  �} MNO∗ ���A,BcMNO∗ f�MNO∗ �� < 0«̄°
«±, 

(9b) 
provides the term by which redundant values of w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  are eliminated from qi,h(MNO∗ ) 
(Moody, 2012b). Equations 8a to 8c are used to approximately evaluate w§¡¢,£c¤¥O∗ f§¤¥O∗ y� as it appears 
in Equations 9a and 9b. For values of ∆¡¢,£c¤¥O∗ f∆¤¥O∗ ≅ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� that survive as values of ©A,BcMNO∗ f 
upon the application of Equation 9, the systematic error in ∆¡¢,£c¤¥O∗ f∆¤¥O∗  becomes the systematic error 
in ∆¡¢,£c¤¥O∗ f∆¤¥O∗ . (See discussions following Equations 8 and 13) 
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The apparent sedimentation coefficient distribution function 
 
The apparent sedimentation coefficient distribution function for replicate h of treatment group i 
at time tϵ is 

²A,BcMNO∗ f = ©A,BcMNO∗ fc�t¤¥O∗ ³´�Of, 
(10) 
in which multiplication of ©A,BcMNO∗ f by �t¤¥O∗ ³´�O yields a product, ²A,BcMNO∗ f, that is normalised for 
the hypothetical effects of radial dilution or radial concentration that the plateau of a 
hypothetical solute characterised by MNO∗  would have accumulated by time tϵ (Moody, 2012b). (It 
is not possible to perfectly normalise for the real effects of radial dilution or radial concentration 
that the plateau of a real solute would have accumulated by time tϵ, because no real solute 
exhibits a diffusion coefficient of zero and behaves like an ideal solute from the start of the 
experiment to time tϵ.) As �t¤¥O∗ ³´�O  is always positive, the signs of ²A,BcMNO∗ f and ©A,BcMNO∗ f are the 
same, so that ²A,BcMNO∗ f differs from ©A,BcMNO∗ f solely with respect to magnitude. For values of 
∆¡¢,£c¤¥O∗ f∆¤¥O∗ ≅ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� that survive as values of ©A,BcMNO∗ f upon the application of Equation 9, 
�t¤¥O∗ ³´�O times the systematic error in ∆¡¢,£c¤¥O∗ f∆¤¥O∗  becomes the systematic error in ∆¡¢,£c¤¥O∗ f∆¤¥O∗ . (See 
discussions following Equations 8, 9 and 13.) 
 
The cumulative distribution function of the apparent sedimentation coefficient 
 
The cumulative distribution function of the apparent sedimentation coefficient,  
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KA,BcMNO∗ f = µ �²A,B(M∗)�¶M∗
¤¥O∗

¤¥O·¸∗
, 

(11) 
is a substantially time-normalised, but not entirely time-independent, measure of the total, initial 
signal from all solutes for which the apparent sedimentation coefficient is less than or equal to 
MNO∗ , but greater than or equal to MNOlm∗  at time tϵ (Moody, 2012b). (This issue is revisited in the 
discussion surrounding Equation 80.) This integral was evaluated numerically from a baseline of 
zero using the trapezoidal rule, as implemented in Origin 6.0. Any systematic noise in �²A,B(M∗)� 
within the limits of integration is accumulated by KA,BcMNO∗ f. (See discussions following Equations 
8, 9, 10 and 13.) 
 
The weight-average apparent sedimentation coefficient 
 
The equation for the weight-average apparent sedimentation coefficient within MNO��∗  ≤ MNO∗  ≤ 
MNO�¹∗  can be written as  

MA,B,e∗ cMNO��∗ , MNO�¹∗ f = º MNO∗ �²A,BcMNO∗ f�¶MNO∗¤¥O»¼∗
¤¥O½�∗KA,BcMNO�¹∗ f − KA,BcMNO��∗ f. 

(12) 
The integral in the numerator was evaluated numerically from a baseline of zero using the 
trapezoidal rule, as implemented in Origin 6.0. The terms in the denominator were evaluated 
using Equation 11. 
 
The observation obtained for each replicate, h, of each treatment group, i, at each time, tϵ, chosen 
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for analysis was 
MA,B,e∗ = MA,B,e∗ cMNO∗ > M�Ak¾x∗ , MNO∗ < M�¿À¾x∗ f + MA,B,e∗ cMNO∗ > M�AkÁx∗ , MNO∗ < M�¿ÀÁx∗ f, 

(13)  
where M�Ak¾x∗  = -10.625E-13 s, M�¿À¾x∗  = -5E-13 s, M�AkÁx∗  = 5E-13 s and M�¿ÀÁx∗  = 10.625E-13 s. 
Equation 12 was used to evaluate the terms on the right-hand side, the inequalities of which 
reflect the fact that, as MNO∗  values depend on tϵ, it is not possible to set the ranges of MNO∗  to specific 
values without implying that Equation 13 applies to a specific time, which it does not. To provide 
the greatest possible comparability, for all replicates of all treatment groups at each time chosen 
for analysis, the same ranges of MA,B,e∗  values were, to the closest extent possible, applied to the 
determination of MA,B,e∗ . The observations (the MA,B,e∗ values) from each time were analysed to assess 
the statistical significance of differences between treatment groups.  
 
As shown later (The signal-to-noise ratio of ²A,BcMNO∗ f worsens in proportion to 1 �t¤¥O∗ ³´�OÂ  as MNO∗  
increases; The accumulated error in KA,BcMNOlt�∗ f increases in proportion to the clipping of 
random noise; The accumulated error in ÄMA,e∗ Å increases in proportion to the clipping of random 
noise), GRNi,h(rj,tα), would make the least systematic contribution to MA,B,e∗  if, in going from 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  (Equation 8) to ©A,BcMNO∗ f (Equation 9), the clipping of the positively signed and the 
negatively signed random noise were minimised (Figures 24 to 27). Even where the clipping of 
positively signed random noise within -ÆM¿∗Æ < MNO∗  < -ÆMÇ∗Æ is complemented by the clipping of 
negatively signed random noise within ÆM¿∗Æ < MNO∗  < ÆMÇ∗Æ, the remaining random noise in those 
regions will contribute an offset to MA,B,e∗ , such that �MA,B,e∗ − MA,e∗ � > 0. As the results for treatment 
groups 1 to 4 (Tables 24 to 27; Figures 44 to 47) show, such an offset can be minimised by 
excluding, through the judicious selection of M�Ak¾x∗ , M�¿À¾x∗ , M�AkÁx∗  and M�¿ÀÁx∗ , regions of low 
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signal-to-noise from the ranges of MNO∗  used to calculate MA,B,e∗  (Equation13). 
 
Statistical analysis 
 
At each time chosen for analysis, the population mean of the observations from the replicates 
within each treatment group is calculated. One-way analysis of variance (ANOVA) is used to test 
whether there are any statistically significant differences in the population means between any of 
the treatment groups at a given time. To quantify the statistical significance of a difference 
between any two treatment groups, a Bonferroni-adjusted t-test (2-tailed) is applied to pair-wise 
comparisons of the population means from different treatment groups at each time. (For details, 
see: One-way analyses of variance (ANOVA), Bonferroni adjusted t-test (2-tailed), and confidence 
intervals about mean values.) 
 
Expectation values 
 
The expectation value of the observation for treatment group i at time tϵ is obtained by subjecting 
the corresponding NFSi(rj,tϵ) data to the same sort of analysis (Equations 7 to 13) that yields the 
observation for replicate h of treatment group i at time tϵ when applied to the corresponding 
NMSi,h(rj,tϵ) data. To apply the equations (Equations 7 to 13) developed for NMSi,h(rj,tϵ) to 
NFSi(rj,tϵ) without changing the notation, the NFSi(rj,tϵ) of treatment group i is designated as 
NMSi(rj,tϵ), where 

>F@AcCd , Def ≡ >?@AcCd, Def = >F@AcCd , Def + HI>AcCdf + JI>A(De) + KJ>AcCd, Def, 
(1c) 
of which the total noise is given by 
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>AcCd , Def = HI>AcCdf + JI>A(De) + KJ>AcCd , Def = 0, 
(2c)  
as each value of TINi(rj) = 0, each value of RINi(tϵ) = 0 and each value of GRNi(rj,tϵ) = 0. 
 
Absent the subscript h, Equations 7 to 13 are then applied. Applying Equation 7 to NMSi(rj,tϵ) and 
NMSi(rj,tα) yields Yi(rj,tϵ) for the difference between the noise-free signals at times tϵ and tα. (The 
difference, NMSi,h(rj,tϵ) - NMSi,h(rj,tα), described again in Equation 110.) Transforming Yi(rj,tϵ) to 
Yi(MNO∗ ) and applying Equation 8 to Yi(MNO∗ ) yields w§¡¢c¤¥O∗ f§¤¥O∗ y�, which is free of any effects due to 
random noise. Applying Equation 9 to w§¡¢c¤¥O∗ f§¤¥O∗ y� yields qi(MNO∗ ), applying Equation 10 to qi(MNO∗ ) 
yields gi(MNO∗ ), applying Equation 11 to gi(MNO∗ ) yields Gi(MNO∗ ) and, lastly, applying Equations 12 
and 13 to Gi(MNO∗ ) yields MA,e∗ , which is the expectation value of the observation for treatment group 
i at time tϵ. 
 
It is worth noting that, despite its alternate designation as NMSi(rj,tϵ), NFSi(rj,tϵ) is not a replicate 
of treatment group i. Parameters that apply to the noise-free data of treatment group i are 
distinguished by the absence of a subscript h. Parameters that apply to replicates of treatment 
group i are distinguished by the presence of a subscript h, where h is an integer within 1 ≤ h ≤ ni, 
in which ni is the number of replicates of treatment group i. Thus, when calculating the 
population mean of the observations, MA,B,e∗ , from all replicates within treatment group i, the 
expectation value for treatment group i, MA,e∗ , is excluded, because the expectation value is not an 
observation from a replicate. 
 
The Svedberg: a convenient unit for reporting MNO∗  and the like 
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As measured sedimentation coefficients, apparent or otherwise, usually range from a little under 
1E-13 s to not much over 100E-13 s, it is often convenient to report such values as multiples of 
1E-13 s, for which purpose, the Svedberg was defined as equal to 1E-13 s. The Svedberg was 
named in honour of The Svedberg, who was the foremost pioneer of AUC. (Sometimes an 
ambiguity is won in translation.) 
 
In this work, to conserve space in tables and graphs, the Svedberg is often applied to MNO∗  
(Equation 5). Likewise, the Svedberg is often applied to the particular weight average apparent 
sedimentation coefficient, MA,B,e∗  (Equation 13), that is the observation sought from each replicate 
within a treatment group, and to the population mean of the replicate observations within a 
treatment group. Where convenient, the Svedberg is also applied to the particular weight average 
apparent sedimentation coefficient, MA,e∗  (Equation 13, absent the subscript h), that is the 
expectation value of the observation. 
 
RANDOM NOISERANDOM NOISERANDOM NOISERANDOM NOISE    
 
GRN source and the Cumulative Distribution Function 
 
The data used as the source of the GRN (Equation 2b) is shown in Figure 1. In that figure, χZ, is 
the random variable, in that it is randomly distributed with respect to the normalised index, 

Ê� = ÊË + 1, 
(14) 
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where Z is the integral index of the χZ values, and m is the total number of χZ values, so that m ≥ 1 
and 1 ≤ Z ≤ m. Thus, 0 < Zm < 1, and for any permitted value of m, the mean of all Zm values is 
equal to 0.5.  
 
Figure 1 also shows another normalised index, 

Ì� = ÌË + 1, 
(15) 
plotted against χζ, which consists of the χZ values placed in ascending order with respect to the 
integral index, ζ, where 1 ≤ ζ ≤ m and where, being identical to the corresponding parameter in 
Equation 14, m ≥ 1. As with Zm, 0 < ζm < 1, and for any permitted value of m, the mean of all ζm 
values is equal to 0.5.  
 
The values of χZ and χζ are identical but differently ordered with respect to either their integral or 
normalised indices. As Zm monotonically increases, χZ varies randomly; as ζm monotonically 
increases, χζ monotonically increases. Thus, for ζ = Z, χζ ≠ χZ in most instances (Tables 1 and 2). 
Among many data sets having m in common, the average frequency with which χζ = χZ when ζ = 
Z is 1/m, which equates to once per data set. Within any given data set, however, the frequency 
with which χζ = χZ when ζ = Z may differ from 1/m. For example, among the data shown in 
Figure 1, the frequency with which χζ = χZ when ζ = Z is twice out of m = 98,588 chances (Table 
3).  
 
In the limit as m approaches infinity, a graph of ζm plotted as a function of χζ becomes 
indistinguishable from a graph of the Cumulative Distribution Function plotted as a function of χZ. 
The Cumulative Distribution Function can be written as  
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ÎÏF(Ð) = Ñ2 {1 + �C} wÐ − ÒÓ2Ôty� = µ Ψμ,×´(Ø)¶ØÙ
�Ú , 

(16) 
where χ is a random variable that can take on any real value, μ is the mean value of χ, σ is the 
standard deviation of χ about μ, A is the value of the CDF in the limit as χ approaches infinity, and 
Ψμ,×´(Ð) is the Probability Density Function (PDF; Equation 24; Figure 2). In Figure 1, the plot of 
CDF(χZ) versus χZ and the plot of CDF(χζ) versus χζ are differently ordered but otherwise 
identical, relative to their differently ordered but otherwise identical arguments, χZ and χζ, 
respectively. Figure 1 shows that a plot of ζm versus χζ is practically indistinguishable from a plot 
of CDF(χZ) versus χZ. For both χZ and χζ in Figure 1, μ = 0 and σ = 1, while for both CDF(χZ) and 
CDF(χζ) in Figure 1, A = 1. 
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Figure 1. CDF(χZ) (�) versus χZ, Zm = Z/(m + 1) (small dots, such as ∙ and ∙, in 24 evenly 
distributed colours) versus χZ, CDF(χζ) () versus χζ, and ζm = ζ/(m + 1) (∘) versus χζ, where χZ 
and χζ are differently ordered distributions of the same values, which number m in total. As Zm 
monotonically increases, χZ varies randomly, while as ζm monotonically increases, χζ 
monotonically increases. For the data in this figure, m = 98,588. For χZ, and thus too for χζ, μ = 0, 
and σ = 1, while for CDF(χZ), and thus too for CDF(χζ), A = 1. (See Equation 16.) 
 
Origin 6.0 was used to generate the normally distributed random numbers that formed the basis 
of the values shown in Figure 1. The mean, μ0, and the standard deviation, σ0, of the numbers 
generated by Origin were calculated, μ0 was subtracted from each number so generated, and the 
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difference was divided by σ0 to obtain the χZ values shown. The adjustments applied to the 
numbers generated by Origin ensured that, for the χζ values, μ would be as close as possible to 0 
and σ would be as close as possible to 1. 
 

Z χZ Zm CDF(χZ)  ζ χζ ζm CDF(χζ) 1 -0.28398 1.0143E-5 0.38821  1 -4.90662 1.0143E-5 4.6330E-7 2 1. 01070 2.0286E-5 0.84392  2 -4.31897 2.0286E-5 7.8381E-6 3 1. 51942 3.0429E-5 0.93567  3 -4.30438 3.0429E-5 8.3726E-6 … … … …  … … … … 24,646 -1.01704 0.249987 0.15457  24,646 -0.676711 0.249987 0.249295 24,647 -0.53198 0.249997 0.29737  24,647 -0.676708 
 

0.249997 0.249296 24,648 -0.45924 0.250008 0.32303  24,648 -0.676705 0.250008 0.249297 … … … …  … … … … 49,294 1.19642 0.499995 0.88423  49,294 -0.001800 0.499995 0.499282 49,295 0.34601 0.500005 0.63533  49,295 -0.001793 
 

0.500005 0.499285 … … … …  … … … … 49,363 0.07720 0.500695 0.53077  49,363 5.80928E-6 0.500695 0.500002 … … … …  … … … … 73,940 2.31231 0.749982 0.98962  73,940 0.672328 0.749982 0.749312 73,941 1.21134 0.749992 0.88712  73,941 0.672345 0.749992 0.749318 73,942 -0.13885 0.750003 0.44478  73,942 0.672378 0.750003 0.749328 … … … …  … … … … 98,586 0.41343 0.999970 0.66036  98,586 4.049212 0.999970 0.999974 98,587 0.43826 0.999980 0.66940  98,587 4.345309 0.999980 0.999993 98,588 -1.55481
  

0.999990 0.06000  98,588 4.634160 0.999990 0.999998 Table 1. Selected values of χZ and χζ for which ζ = Z. (In this table, and in the two tables that 
follow, data are shown at sufficient precision to distinguish close values.) Overall, the values of χZ 
and χζ are identical but differently ordered, in that χζ increases as ζ increases, while χZ varies 
randomly as Z increases. By chance, the lowest magnitude value of χζ occurs at ζ = 49,363, rather 
than, as might be expected, at one of the two most central positions, ζ = 49,294 or ζ = 49,295. 
Among the selected values in this table, there is no instance in which χζ = χZ when ζ = Z. For each 
of the selected values of χζ in this table, Table 2 shows the value of Z for which χZ = χζ. Chance 
favours a 1/m frequency of instances in which χζ = χZ when ζ = Z. For the data shown in Figure 1, 
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the actual frequency of instances in which χζ = χZ when ζ = Z is 2/m (Table 3). 
 

ζ χζ CDF(χζ)  Z – ζ  Z χZ CDF(χZ) 1 -4.90662 4.6330E-7  5,563  5,564 -4.90662 4.6330E-7 2 -4.31897 7.8381E-6  41,810  41,812 -4.31897 7.8381E-6 3 -4.30438 8.3726E-6  8,589  8,592 -4.30438 8.3726E-6 … … …  …  … … … 24,646 -0.676711 0.249295  55,061  79,707 -0.676711 0.249295 24,647 -0.676708 
 

0.249296  21,178  45,825 -0.676708 
 

0.249296 24,648 -0.676705 0.249297  61228  85,876 -0.676705 0.249297 … … …  …  … … … 49,294 -0.001800 0.499282  37,270  86,564 -0.001800 0.499282 49,295 -0.001793 
 

0.499285  -44,510  4,785 -0.001793 
 

0.499285 … … …  …  … … … 49,363 5.8093E-6 0.500002  31,143  80,506 5.8093E-6 0.500002 … … …  …  … … … 73,940 0.672328 0.749312  -48,463  25,477 0.672328 0.749312 73,941 0.672345 0.749318  -11,189  62,752 0.672345 0.749318 73,942 0.672378 0.749328  1,819  75,761 0.672378 0.749328 … … …  …  … … … 98,586 4.049212 0.999974  -10,289  88,297 4.049212 0.999974 98,587 4.345309 0.999993  -41,898  56,689 4.345309 0.999993 98,588 4.634160 0.999998  -33,182  65,406 4.634160 0.999998 Table 2. The selected values of ζ, χζ and CDF(χζ) from Table 1 versus the corresponding values of 
Z, χZ and CDF(χZ) for which χZ = χζ. Among values selected for this table, χZ ≠ ζ = χζ ≠ Z always 
holds, as there is no instance in which Z = ζ when χZ = χζ. Instances in which Z = ζ when χZ = χζ 
are shown in Table 3. 
 

ζ χζ ζm CDF(χζ)  Z – ζ  Z χZ Zm CDF(χZ) … … … …  …  … … … … 8,311 
 

-1.37546 0.084299 0.084495  0  8,311 
 

-1.37546 0.084299 0.084495 … … … …  …  … … … … 33,492 
801 

-0.41398 0.339713 0.339445  0  33,492 
801 

-0.41398 0.339713 0.339445 … … … …  …  … … … … Table 3. The two instances, among 98,588 chances (Figure 1; Tables 1 and 2), for which Z = ζ 
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when χZ = χζ, such that χZ = ζ = χζ = Z. As m normally distributed random numbers can be ordered 
in any of m! equally probable ways, the frequency of instances in which χZ = ζ = χζ = Z should 
approach an average value of 1/m as the number of data sets, each consisting of m values, 
approaches infinity. As in Tables 1 and 2, for a given value of ζ, the values of CDF(χζ) and ζm are 
close, but not identical. Relative to instances in which χZ ≠ ζ = χζ ≠ Z, instances in which χZ = ζ = χζ = Z 
would be neither more nor less likely to coincide with an exact equality of CDF(χζ) to ζm, of which 
no instance is found among the data shown in Figure 1. As the set of all real numbers includes the 
set of all rational numbers and much else, there is almost no chance that an exact equality of 
CDF(χζ) to ζm would ever occur, though the two sets of values should become increasing 
indistinguishable as m approaches infinity. 
 
THE 5 MEGILLAHSTHE 5 MEGILLAHSTHE 5 MEGILLAHSTHE 5 MEGILLAHS    
 
As Table 1 illustrates, the set of all ordered pairs given by (χζ,CDF(χζ)) is not identical to the set of 
all ordered pairs given by (χζ, ζm), despite the impression left by Figure 1 that the plot of CDF(χζ) 
versus χζ might be identical to the plot of ζm versus χζ. It might be supposed, however, that the 
similarity of the two plots would increase as m, and thus the number of χζ values, increased. 
Taken to an extreme, it might be hypothesised that the two sets of ordered pairs, (χζ,CDF(χζ)) and 
(χζ, ζm), would approach a state of indistinguishability as m increases to very large values. This 
hypothesis has been partly tested using 64 treatment groups for which the defining parameter, 
m, ranged from 1 to 39,000,000. Among the treatment groups, the number of replicates ranged 
from a high of 195,000,000 at m = 1 to a low of 5 at m = 39,000,000. (The 5 megillahs are the 5 
replicates at m = 39,000,000.) With respect to these treatment groups, in this section, the general 
approach of the data analysis is summarised, and the main result is given. Further details of the 
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data generation and the results of data analysis are presented in the final section (RANDOMNESS RANDOMNESS RANDOMNESS RANDOMNESS 
AS A FUNCTION OF THE TOTAL POPULATION OF OBSERVATIONSAS A FUNCTION OF THE TOTAL POPULATION OF OBSERVATIONSAS A FUNCTION OF THE TOTAL POPULATION OF OBSERVATIONSAS A FUNCTION OF THE TOTAL POPULATION OF OBSERVATIONS) of this work. Some of the data 
analysis relies on the same statistical methods (One-way analyses of variance (ANOVA), 
Bonferroni adjusted t-test (2-tailed), and confidence intervals about mean values) that are 
applied to the simulated AUC data. 
 
The 64 treatment groups are indexed by i, and within a given treatment group, there are ni 
replicate data sets that are indexed by h. Within each replicate, h, of treatment group i, there is a 
population of mi random variables that are denoted as Ðà¢,B when in their original order given by 
the integral index, ÊA . When placed in ascending order, the mi random variables within replicate h 
of treatment group i are denoted as Ðá¢,B, and their place in the ascending order is given by the 
integral index ÌA . The normalised index of ÊA  is given by Ê�¢ = ÊA (ËA + 1)Â , and the normalised 
index of ÌA  is given by Ì�¢ = ÌA (ËA + 1)Â . Thus, it follows that 1 ≤ ÊA  ≤ mi, 1 ≤ ÌA  ≤ mi, 0 < Ê�¢  < 1 
and 0 < Ì�¢  < 1. It also follows that, for any permitted value of mi, the mean of all Ê�¢  values and 
the mean of all Ì�¢  values are both equal to 0.5. 
 
The parameter m of Equations 14 and 15 is an instance of the parameter mi that is unspecified 
with respect to treatment group. The parameters Z and Zm of Equation 14, Figure 1 and Tables 1 
to 3 are instances of the parameters ÊA  and Ê�¢ , respectively, that are unspecified with respect to 
treatment group. Likewise, the parameters ζ and ζm of Equation 15, Figure 1 and Tables 1 to 3 are 
instances of the parameters ÌA  and Ì�¢ , respectively, that are unspecified with respect to 
treatment group. Similarly, the parameters χZ and χζ of Figure 1 and Tables 1 to 3 are instances of 
the parameters Ðà¢,B and Ðá¢,B, respectively, that are unspecified with respect to either treatment 
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group or replicate. 
 
The defining parameter of each treatment group i, is the population, mi, of each replicate, h. With 
the set of all ÌA  consisting of each integer within 1 to mi, the mi values of Ì�¢  are identical for each 
replicate, h, within treatment group i. In contrast, within a given treatment group, i, each 
replicate, h, exhibits a unique set of mi values of Ðá¢,B that increase monotonically as either ÌA  or 
Ì�¢  increases, assuming mi > 1. Thus, for mi > 1, the set of mi values of CDF(Ðá¢,B) will increase 
monotonically as Ì�¢  increases. In the limit as mi approaches infinity, the set of all Ì�¢  values and 
the set of all CDF(Ðá¢,B) values should share the same range, according to the hypothesis being 
tested. 
 
Within replicate h of treatment group i, there are mi absolute differences, each given by 

âA,B = �Ì�¢ − ÎÏFcÐá¢,Bf� = ã ÌAËA + 1 − ÎÏFcÐá¢,Bfã. 
(17) 
For any permissible value of mi, the range of δi,h can be described by 0 ≤ δi,h < 1, although for 
finite values of mi, δi,h would very rarely equal zero. 
 
Within replicate h of treatment group i, the mean of all mi absolute differences is 

ÑA,B = 1ËA i âA,B
�¢

álm = 1ËA i�Ì�¢ − ÎÏFcÐá¢,Bf��¢
álm = 1ËA i ã ÌAËA + 1 − ÎÏFcÐá¢,Bfã�¢

álm , 
(18) 
and within treatment group i, the mean of all Ai,h is  
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ÑA = 1vA i ÑA,B
k¢

Blm . 
(19) 
As ni approaches infinity, Ai can be expected to converge toward a value that depends solely on 
mi. 
 
At mi = 1, Ai approaches 0.25 as ni approaches infinity 
 
The values of Ðá¢,B are obtained by placing the values of Ðà¢,B in ascending order, and as above, it 
is assumed below that each value of Ðà¢,B is randomly drawn from a set of real numbers for which 
the mean, μi,h, is equal to zero and the standard deviation, σi,h, is equal to one (Equation 16). 
Given that assumption, and given sufficient information about the characteristics of Ai,h and 
CDF(Ðá¢,B), the expectation value of Ai can be obtained for the case of ni approaching infinity and 
mi = 1. 
 
At mi = 1, ζi is restricted to a value of 1, and, by Equation 15, Ì�¢  is restricted to a value of 0.5. 
Furthermore, at mi = 1, there is only one absolute difference per replicate in Equation 18. Thus, 
Ai,h = Æ0.5 - CDF(Ðá¢,B)Æ for each replicate, h, at mi = 1. At mi = 1, as ni approaches infinity, the 
collection of all ni of the Ðá¢,B values is found to be normally distributed about a mean of μi,h = 0 
with an standard deviation of σi,h = 1 over a range that hypothetically includes all real numbers 
(-∞ < Ðá¢,B < ∞), so that the values of CDF(Ðá¢,B) become uniformly distributed over a 
hypothetical range given by 0 < CDF(Ðá¢,B) < 1, within which the central value of CDF(0) = 0.5 is 
also the mean value. Defining δ0.5 as a real variable with a range given by 0 ≤ δ0.5 ≤ 0.5, for any 
given permissible value of δ0.5, the probability of finding CDF(Ðá¢,B) = δ0.5 is equal to the 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

43 

 

probability of finding CDF(Ðá¢,B) - 0.5 = δ0.5. Exploiting these characteristics of Ðá¢,B, it is shown 
below that, at mi = 1, Ai approaches 0.25 as ni approaches infinity. 
 
At mi = 1, as ni approaches infinity, in one half of all instances, CDF(Ðá¢,B) ≤ 0.5, while in the other 
half of all instances, CDF(Ðá¢,B) ≥ 0.5. Furthermore, as ni approaches infinity, the mean value of all 
CDF(Ðá¢,B) ≤ 0.5 approaches 0.25, while the mean value of all CDF(Ðá¢,B) ≥ 0.5 approaches 0.75. 
(See notes following Equation 27.) Thus, as ni approaches infinity, the mean of ni/2 instances of 
Æ0.5 - CDF(Ðá¢,B)Æ will approach Æ0.5 – 0.25Æ = 0.25, while the mean of the other ni/2 instances of 
Æ0.5 - CDF(Ðá¢,B)Æ will approach Æ0.5 – 0.75Æ = 0.25. Therefore, as ni approaches infinity, the total 
value of all ni instances of Æ0.5 - CDF(Ðá¢,B)Æ approaches (0.25ni/2 + 0.25ni/2), so that the mean of 
all ni instances of Æ0.5 - CDF(Ðá¢,B)Æ will approach (0.25ni/2 + 0.25ni/2)/ni = 0.25. 
 
Setting the index i to 1 for the treatment group characterised by a single absolute difference per 
replicate renders mi=1 = 1, which, due to ζi=1 being restricted to 1, makes 0.5 the sole value that 
Ì�¢·¸  exhibits. Thus, with i = 1, Ì�¸  can always be expressed as 0.5, Ðá¢·¸,Bcan always be 
expressed as χ1,h, A1,h can always be expressed as Æ0.5 - CDF(χ1,h)Æ, and in the limit as n1 
approaches infinity, 
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limk¸→Ú Ñm = limk¸→Ú 1vm i Ñm,B
k¸

Blm = limk¸→Ú 1vm i 1Ëm i�Ì�¸ − ÎÏFcÐá¢·¸,Bf��¸
álm

k¸
Blm

= limk¸→Ú 1vm i 1Ëm i ã ÌAlmËm + 1 − ÎÏFcÐá¢·¸,Bfã�¸lm
álm

k¸
Blm = limk¸→Ú 1vm i�0.5 − ÎÏFcÐm,Bf�k¸

Blm

= 1vm i �Æ0.5 − 0.25Æ + Æ0.5 − 0.75Æ2 �k¸
Blm = 1vm vm �Æ0.5 − 0.25Æ + Æ0.5 − 0.75Æ2 �

= Æ0.5 − 0.25Æ + Æ0.5 − 0.75Æ2 = 0.25 + 0.252 = 0.25, 
(20) 
where, for ni approaching infinity, Æ0.5 – 0.25Æ has been substituted for the mean of 
Æ0.5 - CDF(Ðá¢,B)Æ in one half of all n1 instances, and Æ0.5 – 0.75Æ has been substituted for the mean 
of Æ0.5 - CDF(Ðá¢,B)Æ in the other half of all n1 instances. 
 
As mi approaches ∞, Ai approaches 0, regardless of whether ni approaches infinity 
 
At the opposite extreme, it is expected that each value of Ai,h approaches zero as mi approaches 
infinity. Again, the values of Ðá¢,B are obtained by placing the values of Ðà¢,B in ascending order, 
and as above, it is again assumed below that each value of Ðà¢,B is randomly drawn from a set of 
real numbers for which the mean, μi,h, is equal to zero and the standard deviation, σi,h, is equal to 
one (Equation 16). 
 
Letting ∞ represent i for the treatment group in which mi approaches ∞, the key parameter of 
Equation 18 is m∞. As a consequence of m∞ approaching infinity, the set of all Ðáæ,B comes as 
close as possible to resembling an infinite number of random numbers that are normally 
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distributed about μ = 0 with σ = 1 over a range that hypothetically includes all real numbers 
(-∞ < Ðáæ,B < ∞), so that the values of CDF(Ðáæ,B) become uniformly distributed over a 
hypothetical range given by 0 < CDF(Ðáæ,B) < 1, within which the central value of CDF(0) = 0.5 is 
also the mean value. 
 
As another consequence of m∞ approaching infinity, the collection of all m∞ of the ζ∞ values 
comes as close as possible to resembling the set of all positive integers, so that, by Equation 15, 
the set of all Ì�æ  values comes as close as possible to resembling the set of every rational number 
between zero and one. As such, a value of Ì�æ  can be found that is arbitrarily close to any given 
value of CDF(Ðáæ,B), the entire set of which comes as close as possible to resembling the set of all 
real numbers between 0 and 1. Furthermore, as the values of Ðáæ,B are placed in ascending order 
with respect to ζ∞, the values of CDF(Ðáæ,B), like the values of Ì�æ , also occur in ascending order 
with respect to ζ∞. Thus, as m∞ approaches ∞, Ì�æ  approaches CDF(Ðáæ,B) at each value of ζ∞, so 
that, by Equation 18, 

ÑÚ,B = lim�¢→Ú ÑA,B = lim�¢→Ú 1ËA i�Ì�¢ − ÎÏFcÐá¢,Bf��¢
álm = 1ËÚ i�Ì�æ − ÎÏFcÐá¢·æ,Bf��æ

álm

= 1ËÚ i ã ÌÚËÚ + 1 − ÎÏFcÐáæ,Bfã�æ
álm = 1ËÚ i 0�æ

álm = 0. 
(21)  
Applying to this result to Equation 19, even in the absence of replicates, which is to say, where n∞ 
= 1, A∞ = 0 should be obtained. In the limit as both n∞ and m∞ approach infinity, therefore, 
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ÑÚ = limA→Ú ÑA = limkæ→Ú 1vÚ i ÑÚ,B
kæ
Blm = limkæ→Ú 1vÚ w lim�¢→Ú ÑA,By

= limkæ→Ú 1vÚ i ç lim�¢→Ú 1ËA i�Ì�¢ − ÎÏFcÐá¢,Bf��¢
álm èkæ

Blm

= limkæ→Ú 1vÚ i 1ËÚ i�Ì�æ − ÎÏFcÐá¢·æ,Bf��æ
álm

kæ
Blm

= limkæ→Ú 1vÚ i 1ËÚ i ã ÌÚËÚ + 1 − ÎÏFcÐáæ,Bfã�æ
álm

kæ
Blm = 1vÚ i 1ËÚ i 0�æ

álm
kæ
Blm = 1vÚ i 0kæ

Blm = 0. 
(22)  
For 1 ≤ mi, up until the results become erratic at high values of mi, it is found that 

limk¢→Ú ÑA = limk¢→Ú 1vA i ÑA,B
k¢

Blm = limk¢→Ú 1vA i 1ËA i�Ì�¢ − ÎÏFcÐá¢,Bf��¢
álm

k¢
Blm

= limk¢→Ú 1vA i 1ËA i ã ÌAËA + 1 − ÎÏFcÐá¢,Bfã�¢
álm

k¢
Blm ≥ limk¸→Ú ÑméËA = ÑêëìéËA  = 0.25éËA  , 

(23)  
where Equation 20 gives 0.25 exactly for the value of A1 in the limit as n1 approaches infinity, and 
Aref is defined as limk¸→Ú Ñm. Results that are fairly consistent with Inequality 23 are presented in 
the supplementary section, RANDOMNESS AS A FUNCTION OF THE TOTAL POPULATION OF RANDOMNESS AS A FUNCTION OF THE TOTAL POPULATION OF RANDOMNESS AS A FUNCTION OF THE TOTAL POPULATION OF RANDOMNESS AS A FUNCTION OF THE TOTAL POPULATION OF 
OBSERVATIONSOBSERVATIONSOBSERVATIONSOBSERVATIONS.  
 
Based on linear regression results for data restricted to mi < 15,000, it could be argued that Ai = 
Aref(mi)-1/k + δi, where Aref = Ai=1 = 0.25, k = 2 and δi increases from 0 at mi = m1 = 1 to 
approximately 0.02364 for mi = 3, beyond which δi decreases to approximately 0.00065 at mi = 
10,000. Accordingly, Ai would be expected to approach δi < 0.00065 as mi approached infinity, 
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but this expectation is difficult to confirm, as the results are erratic for mi > 10,000. Within 
10,000 < mi < 3,900,000, Ai sometimes violates Inequality 23, and for the most populous 
treatment groups (mi = 3,900,000 to mi = 39,000,000), the values of Ai are not mutually 
distinguishable with appreciable confidence. An inverse proportionality of ni to mi, and a 
constrained precision of Ðá¢,B in the face of mi values that literally increase ad infinitum, are 
hypothetical causes of the erratic behaviour of Ai at high mi. Thus, to more confidently address 
the functional relationship between Ai and mi would perhaps require increasing the number of 
replicates at high mi values, and increasing the precision of the Ðá¢,B values.  
 
Random noise and the Standard Normal Distribution 
 
As shown in Equation 16, the CDF is obtained by integrating the PDF with respect to the random 
variable, χ, that, along with the variables μ, σ and A, the two functions share in common. The 
Standard Normal Distribution (Figure 2) is equal to the PDF in the case of μ = 0, σ = 1 and A = 1, 
which are the values of μ, σ and A that apply to the CDF, either in the form of CDF(χZ) or CDF(χζ), 
shown in Figure 1.  
 
Whether distributed randomly or in ascending order with respect to the CDF values, 
approximately 68.27% of all points are found within -σ < χ < σ; approximately 95.45% of all 
points are found within -2σ < χ < 2σ; and approximately 99.73% of all points are found within 
-3σ < χ < 3σ. 
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Figure 2. The Standard Normal Distribution (⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯), a special case of PDF(χ) = 
Ψμ,×´(Ð), versus the real, random variable, χ. The normalised index, Zm (small circles, such as ° 
and °, in 24 evenly distributed colours), versus χ is shown superimposed. (Where Zm is 
superimposed against a coloured background, symbols of that colour cannot always be seen.) 
The Standard Normal Distribution (SND) is a special case of the Probability Density Function 
(PDF; Equation 24). With μ (the mean value of χ) equal to 0, σ (the standard deviation of χ about 
μ) equal to 1 and A (the integral of the PDF from χ = -∞ to χ = ∞; Equation 25) equal to 1, the 
PDF is equal to the SND. The probability of finding a randomly chosen, real number within χmin < 
χ < χmax is given by p(χmin, χmax), which is the normalised area obtained when the PDF is 
integrated from χmin to χmax (Equation 26). For μ = 0 and σ = 1, p(-σ, σ) ≃ 0.682689, p(-2σ, 2σ) ≃ 
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0.954500, p(-3σ, 3σ) ≃ 0.997300, p(-4σ, 4σ) ≃ 0.999937, and p(-5σ, 5σ) ≃ 0.999999. For the 
SND illustrated in this figure, the area shown in red is equal to p(-σ, σ), the sum of the areas 
shown in red and yellow is equal to p(-2σ, 2σ), the sum of the areas shown in red, yellow and 
green is equal to p(-3σ, 3σ), the sum of the areas shown in red, yellow, green and blue is equal to 
p(-4σ, 4σ), and, although the areas in black are too small to be seen, the sum of the areas in black, 
red, yellow, green and blue is equal to p(-5σ, 5σ).  
 
The Probability Density Function (PDF), a special case of which, the Standard Normal 
Distribution (SND), is shown in Figure 2, is given by 

ïÏF(Ð) = Ψμ,×´(Ð) = ÑÓ2ðÔt ñ�òó �− ôÐ − ÒÓ2Ôtõt�ö = ¶ÎÏF(Ð)¶Ð , 
(24) 
where χ is a random variable that can take on any real value, μ is the mean value of χ, σ is the 
standard deviation of χ about μ, CDF is the Cumulative Distribution Function (Equation 16; 
Figure 1) and 

Ñ = µ Ψμ,×´(Ø)¶ØÚ
�Ú = limÙ→Ú Ñ2 {1 + �C} wÐ − ÒÓ2Ôty� = limÙ→Ú ÎÏF(Ð) 

(25) 
is the area obtained when the PDF is integrated from χ = -∞ to χ = ∞. 
 
The probability of finding a randomly chosen, real number within χmin < χ < χmax is given by 

ó(Ð�Ak, Ð�¿À) = 1Ñ µ Ψμ,×´(Ø)¶ØÙ÷øù
Ù÷¢ú = ÎÏF(Ð�¿À) − ÎÏF(Ð�Ak)Ñ , 

(26) 
which is the normalised area obtained when the PDF is integrated from χmin to χmax, with A 
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(Equation 25) being the normalisation factor. Applied to the SND (Figure 2), for which μ = 0 and 
σ = 1, Equation 26 yields p(-σ, σ) ≃ 0.682689, p(-2σ, 2σ) ≃ 0.954500, p(-3σ, 3σ) ≃ 0.997300, 
p(-4σ, 4σ) ≃ 0.999937, and p(-5σ, 5σ) ≃ 0.999999. As A = 1 for the SND, in Figure 2, the area 
shown in red is equal to p(-σ, σ), the sum of the areas shown in red and yellow is equal to 
p(-2σ, 2σ), and the sum of the areas shown in red, yellow and green is equal to p(-3σ, 3σ).  
 
For ni → ∞, μ = 0, σ = 1 and χmin ≤ Ðá¢,B ≤ χmax, the median and the mean of CDF(Ðá¢,B) are equal  
 
It will now be shown that, for ni approaching infinity, μ = 0, σ = 1 and χmin ≤ Ðá¢,B ≤ χmax, the 
median and the mean of CDF(Ðá¢,B) approach the same value. The relatively general result 
obtained will be used to support the two previous statements, made with respect to Equation 20, 
that, for ni approaching infinity, μ = 0, σ = 1 and A = 1, the mean value of all CDF(Ðá¢,B) ≤ 0.5 
approaches 0.25, while the mean value of all CDF(Ðá¢,B) ≥ 0.5 approaches 0.75. The specific cases 
of CDF(Ðá¢,B) ≤ 0.5 and CDF(Ðá¢,B) ≥ 0.5 will be explored with the aid of two landmarks, χ0.25 and 
χ0.75, among the Ðá¢,B values. 
 
For ni approaching infinity, μ = 0, σ = 1 and A = 1, CDF(Ðá¢,B) increases monotonically from just 
above 0 to just below 1 as Ðá¢,B increases monotonically from just above -∞ to just below ∞, with 
Ðá¢,B approaching -∞ from above, Ðá¢,B = 0 and Ðá¢,B approaching ∞ from below constituting 
useful landmarks at which CDF(-∞) = 0, CDF(0) = 0.5 and CDF(∞) = 1, respectively. Two 
additional landmarks are now defined within the range of Ðá¢,B. Located among Ðá¢,B ≤ 0, the 
landmark χ0.25 is defined such that CDF(χ0.25) = 0.25 when μ = 0 and σ = 1. Located among Ðá¢,B ≥ 
0, the landmark χ0.75 is defined such that CDF(χ0.75) = 0.75 when μ = 0 and σ = 1. As SND(χ0.25) = 
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SND(χ0.75), where SND(Ðá¢,B) = PDF(Ðá¢,B) in the special case of μ = 0, σ = 1 and A = 1 (Equation 
24), it can be seen (Figure 2) that Æχ0.25 - 0Æ = Æχ0.75 - 0Æ. Thus, being on opposite sides of zero, 
χ0.25 = -χ0.75. (Numerically, χ0.25 ≃ -0.67448975 and χ0.75 ≃ 0.67448975.) 
 
That p(-∞, χ0.25) = p(χ0.25, 0) = 0.25 shows that, as ni approaches infinity, the median value of all 
CDF(Ðá¢,B) ≤ 0.5 approaches CDF(χ0.25) = 0.25. (That is, the probability of Ðá¢,B being below χ0.25 is 
equal to the probability of Ðá¢,B being between χ0.25 and 0.) Similarly, that p(0, χ0.75) = p(χ0.75, ∞) 
= 0.25 shows that, as ni approaches infinity, the median value of all CDF(Ðá¢,B) ≥ 0.5 approaches 
CDF(χ0.75) = 0.75. (That is, the probability of Ðá¢,B being between 0 and χ0.75 is equal to the 
probability of Ðá¢,B being above χ0.75.)  
 
In the case of μ = 0 and σ = 1, for Ðá¢,B within χmin ≤ Ðá¢,B ≤ χmax, the median value of CDF(Ðá¢,B) is 
equal to the mean value of CDF(Ðá¢,B), the latter being given by 

ÎÏFûûûûûû(Ð�Ak, Ð�¿À) = º ÎÏF(Ø)Ψμ,×´(Ø)¶ØÙ÷øùÙ÷¢úº Ψμ,×´(Ø)¶ØÙ÷øùÙ÷¢ú
= º ÎÏF(Ø)Ψμ,×´(Ø)¶ØÙ÷øùÙ÷¢úÎÏF(Ð�¿À) − ÎÏF(Ð�Ak), 

(27a) 
which, using Equations 24, 25 and 26, can be rewritten as 

ÎÏFûûûûûû(Ð�Ak, Ð�¿À) = º ÎÏF(Ø)PDF(Ø)¶ØÙ÷øùÙ÷¢úÎÏF(Ð�¿À) − ÎÏF(Ð�Ak) = º ÎÏF(Ø) ¶ÎÏF(Ø)¶Ø ¶ØÙ÷øùÙ÷¢úÎÏF(Ð�¿À) − ÎÏF(Ð�Ak)
= º ÎÏF(Ø)¶ÎÏF(Ø)Ù÷øùÙ÷¢úÎÏF(Ð�¿À) − ÎÏF(Ð�Ak) = 1Ñ º ÎÏF(Ø)¶ÎÏF(Ø)Ù÷øùÙ÷¢úó(Ð�Ak, Ð�¿À) . 

(27b) 
If χm is defined such that, in the case of μ = 0 and σ = 1, CDF(χm) = ÎÏFûûûûûû(Ð�Ak, Ð�¿À), then χm is 
the value of Ðá¢,B at which p(χmin, χm) = p(χm, χmax), so that, as ni approaches infinity, the median 
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value of all CDF(Ðá¢,B) within CDF(χmin) ≤ CDF(Ðá¢,B) ≤ CDF(χmax) approaches CDF(χm). (That is, 
the probability of Ðá¢,B being between χmin and χm is equal to the probability of Ðá¢,B being between 
χm and χmax.)  
 
In general, then, within CDF(χmin) ≤ CDF(Ðá¢,B) ≤ CDF(χmax), as ni approaches infinity, the mean 
value of all CDF(Ðá¢,B) approaches the median value of all CDF(Ðá¢,B). Specifically, as ni 
approaches infinity, within Ðá¢,B ≤ 0, CDF(χ0.25) = ÎÏFûûûûûû(−∞, 0) = 0.25 when μ = 0 and σ = 1, A = 
1. Likewise, as ni approaches infinity, within Ðá¢,B ≥ 0, CDF(χ0.75) = ÎÏFûûûûûû(0, ∞) = 0.75 when μ = 0, 
σ = 1 and A = 1.  
 
Some other consequences of Ðá¢,B, and CDF(Ðá¢,B) being distributed differently 
 
Some other noteworthy consequences result from Ðá¢,B , and CDF(Ðá¢,B) being distributed 
differently. As ni approaches infinity, the collection of all Ðá¢,B , values becomes normally 
distributed but the collection of all CDF(Ðá¢,B) values becomes uniformly distributed, as a result of 
which, for CDF(χb) - CDF(χa) = CDF(χd) - CDF(χc) > 0, the number of Ðá¢,B values within χa ≤ 
Ðá¢,B ≤ χb will be equal to the number of Ðá¢,B values within χc ≤ Ðá¢,B ≤ χd, provided that mi is 
sufficiently large to ensure there being many intervening Ðá¢,B values between the extrema of the 
two intervals, χa to χb and χc to χd. For CDF(χb) - CDF(χa) = CDF(χd) - CDF(χc) > 0, with χd > χc. > 
χb > χa, and with mi approaching infinity, χb - χa would only be found to equal χd - χc in the special 
case of (χc - μ) = (μ – χb), however. 
 
Data that formed the basis of GRNi,h(r,t) 
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The signal to be simulated is that which would be collected in an AUC experiment using the RI 
detection system. The GRN of the simulations was based on the characteristics of three sets of 
real AUC data collected at 3,000 RPM using the RI-detection system to scan the open spaces, 
visible below r = 5.85 cm and above r = 7.15 cm, of a radial-calibration centrepiece properly 
placed and aligned in position 8 of an 8-hole rotor. The selected scans were obtained under 
conditions of the closest discernible approach to thermal stability and the closest discernible 
approach to vacuum. For each scan, the rotor temperature recorded, being 20.00°C, was that 
which the instrument was set to maintain. (The temperature recorded during these scans is 
treated as being identical the simulation temperature, even though the latter, denoted as 20.00°C 
on the Celsius scale, is written with one more significant figure, which is done to avoid rounding 
when converting from or to 293.15 K on the absolute temperature scale.) No blank subtraction 
was applied to any of the scans. (This method describes the initial portion of an AUC velocity 
experiment. For a somewhat general method that applies to an AUC velocity experiment in its 
entirety, see IMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOL.) 
 
As applied to these scans, for which the nominal wavelength of the laser light source was 675 nm, 
the settings of the RI-detection system included an alignment angle of 0.00°, a laser delay of 
248.50°, a laser duration of 0.40°, a laser gain (contrast) of 10, a laser offset (brightness) of 127, a 
vertical scaling factor of 21.75 points (pixel rows) per fringe, an inside radius of r1st = 5.7500 cm 
and an outside radius of rlast = 7.2140 cm. The latter two parameters are used to calculate the 
horizontal scaling factor. 
 
The vertical and horizontal scaling factors apply to the images to be recorded. For each such 
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image, horizontally oriented points (as pixel columns) can be considered those that are parallel 
to the radial axis, while vertically oriented points (as pixel rows) can be considered those that are 
perpendicular to the radial axis and perpendicular to the light path through the open spaces of 
the radial-calibration centrepiece. For the vertical scaling factor, 21.75 points (pixel rows) per 
fringe is the default setting. The horizontal scaling factor is equal to (rlast  - r1st)/(plast  - p1st), 
where p1st is the first point (pixel column 1, by definition) of the image, plast is the last point (pixel 
column 2022, in this case) of the image, r1st is the inside radius that is assigned to p1st, and rlast is 
the outside radius that is assigned to plast. The default setting of the inside radius is r1st = 5.7500 
cm, and the default setting of the outside radius is rlast = 7.2140 cm. Using these default settings 
of r1st and rlast, for p1st = 1 pixel and plast = 2022 pixel, a horizontal scaling factor of 
(rlast  - r1st)/(plast  - p1st) ≅ 7.2439E-4 cm/pixel would be obtained. (As the actual value of rlast was 
7.2145 cm, with r1st equal to its expected value of 5.7500 cm, a horizontal scaling factor of 
approximately 7.2464E-4 cm/pixel was obtained instead.) 
 
When directed through the open spaces of a radial-calibration centrepiece, the light from the RI 
detection system is unobstructed by any parts of the rotor or any components placed in the rotor. 
Except near their edges, which can give rise to optical artefacts, such open spaces should yield 
data that are dominated by GRN to the greatest possible extent, as the least systematic noise 
possible should be found where the fewest components lie in the optical path of the detection 
system. 
 
Edited data sets were obtained by deleting any data that did not correspond with an open space. 
There being two open spaces per scan, each scan yielded one data set for the upper opening of 
the radial-calibration centrepiece, and another data set for the lower opening of the radial-
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calibration centrepiece. Such once-edited data did not exclude optical artefacts from the edges of 
the openings. The once-edited data sets did exclude the first pixel column (r =5.7500 cm) of each 
scan, however, as its value was always found to be zero, and thus recorded neither signal nor 
noise. As such, the lower-most once-edited data set of each scan extended from pixel column 2 (r 
=5.7507 cm) to pixel column 139 (r =5.8500 cm), while the upper-most once-edited data set of 
each scan extended from pixel column 1933 (r =7.1500 cm) to pixel column 2022 (r =7.2145 
cm). 
 
From each once-edited data set, a further edited data set was obtained by deleting any data that 
looked to be affected by optical artefacts from the edges of the open spaces of the radial-
calibration centrepiece. Only the two edges used to set the inner and outer radial calibration 
points, rinner = 5.8500 cm and router = 7.1500 cm, respectively, were within the range of the data. 
As such, the lower-most twice-edited data set of each scan extended from pixel column 2 (5.7507 
cm) to pixel column 133 (5.8471 cm), while the upper-most twice-edited data set of each scan 
extended from pixel column 1949 (7.1616 cm) to pixel column 2022 (7.2145 cm). Only the twice-
edited data were subjected to analysis, which followed the procedures described next. 
  
To normalise the twice-edited data sets to a common mean of zero, within each such edited data 
set, the mean fringe displacement was subtracted from the individual fringe displacements 
(Figure 3). The so-normalised, twice-edited data sets were then combined, placed in ascending 
order and defined as the independent variable, χZ, against which, as in Figure 1, was plotted a 
dependent variable, ζm (Equation 15), for which m = 630 was the total number of χZ values. 
(Both χZ and ζm are indexed by Z, which takes on each integral value from 1 to m. As Z ranges 
from its lowest to highest value, so do χZ and ζm.) For the combined set of m = 630 χZ values, the 
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mean,  
ÒÙü = 1Ë i Ðà

�
àlm , 

(28) 
and the standard deviation,  

ÔÙü = ý 1Ë − 1 þicÐà − ÒÙàft�
àlm ��x.�, 

(29) 
were ÒÙü  = 0 fringe and ÔÙü  = 8.80480E-3 fringe, respectively. The normalisation procedure 
ensured that ÒÙü  would equal zero. 
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Figure 3. The twice-edited, normalised data sets, from scans NMSi,h(r,t2682 s) (�),NMSi,h(r,t3182 s) 
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(�) and NMSi,h(r,t3388 s) (�), versus r, where h and i can each be assigned the value 0 to denote 
the calibration centrepiece as replicate h = 0 of treatment group i = 0, and where t2682 s = 2,682 s, 
t3182 s = 3,182 s and t3388 s = 3,388 s. All of the data lie within the open holes of the calibration 
centrepiece. Thus, while systematic trends are evident, these data are assumed to exhibit the 
least systematic noise possible. 
 
Data were fit via the nonlinear least-squares fitting (NLSF) utility of Origin 6.0. As a function of 
the presumed-to-be random variable, χZ, the dimensionless normalised index, ζm, was readily fit 
to the Cumulative Distribution Function, CDF(χZ) (Equation 16), to obtain, with A held fixed at 1 
and μ held fixed at 0, σ = (7.55901± 0.01920)E-3 fringe, a correlation coefficient of R 2 = 
0.99856, and a reduced chi-squared statistic of χ 2/DoF = 1.2E-4, where DoF, the degrees of 
freedom, should be 1 less than m - nparam, for which the number of fitted parameters is nparam. For 
the CDF(χZ), when only fitting σ, nparam is equal to just 1. In tests with several sets of χZ versus ζm 
data in which the NLSF was used to fit ζm as CDF(χZ), it was found that χ 2/DoF was 
indistinguishable from the sum of the squares of error (A.K.A. the mean square error), 

��� = 1Ë − 1 i[Ê� − ÎÏF(Ðà)]t�
àlm , 

(30) 
for values of m ranging from 630 to 100,000. With respect to the data just discussed, which 
yielded χ 2/DoF = 1.2E-4 for ζm fit as CDF(χZ), eMS = 1.20206E-4 was obtained. 
 
Denoting μ and σ from the NLSF as μNLSF and σNLSF, respectively, ÒÙü  can be equated to μNLSF 
exactly, while Δσ% = (100%)�ÔÙü − Ô����� ÔÙü	  = 14.15%. The equivalence of ÒÙü  and μNLSF is due 
to both having been set equal to zero. The extent by which Δσ% exceeds zero can be considered a 
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measure of the extent to which χZ diverges from a normal distribution. Both visually (Figure 4) 
and statistically (given R 2 and χ 2/DoF), however, the fact that ζm (Equation 15)appears to be 
normally distributed with respect to χZ can be taken as evidence that χZ is normally distributed. 
 
With ÔÙü  = 8.80480E-3 fringe being slightly larger than σNLSF = (7.55901± 0.01920)E-3 fringe, 
the former was used as the more liberal starting point to estimate σRI, the standard deviation 
used to scale the random noise. The standard deviation of the χZ values of the twice-edited data 
was rounded up from 8.80480E-3 fringe to 0.00900 fringe, which was multiplied by 3/2 to obtain 
0.01350 fringe, which, in turn, was rounded up to obtain σRI = 0.01400 fringe. 
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Figure 4. The dimensionless normalised index, ζm (), versus the combined, twice-edited, 
normalised data sets, χZ. With A held fixed at 1 and μ held fixed at 0, ζm, was fit (⎯⎯⎯⎯)to the 
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Cumulative Distribution Function, CDF(χZ) to obtain R 2 = 0.99856 and χ 2/DoF = 0.00012 and σ 
= σNLSF = (7.55901± 0.01920)E-3 fringe. Also shown is CDF(χZ) with A = 1, μ = 0, and σ = ÔÙü  = 
8.80480E-3 fringe (⎯⎯⎯⎯). 
 
Construction of GRNi,h(r,t) data 
 
The characteristics given the GRNi,h(r,t) data were based on the characteristics observed in 
representative noise from real AUC data collected with the RI detection system (Data that formed 
the basis of GRNi,h(r,t)). The data shown in Figure 1 provided the raw material from which the 
GRNi,h(r,t) data were constructed. With respect to either its integral index, Z, or its normalised 
index, ζm (Equation 15), the dimensionless random variable, χZ, of Figure 1 is normally 
distributed with a standard deviation of σ = 1 about a mean value of μ = 0. 
 
As described in more detail later (Simulation of GRNi,h(r,t); Equation 42; Tables 14a and 14b), the 
98,588 data points shown in Figure 1 were split into 49 groups, each comprised of 2,012 χZ 
values that, consecutively from 1st to 2,012th, were kept in the same order as that in which they 
occur with respect to Z in the original set of 98,588 values. Two adjustments were made to each 
group of 2,012 χZ values. In the first adjustment, the mean of each group of 2,012 χZ values was 
subtracted from each individual value of that group to obtain 2,012 normalised χZ values for 
which the mean was as close to zero as error allowed, and the standard deviation was 
approximately 1. In the second adjustment, each normalised χZ value of each group was 
multiplied by σRI to obtain a group of 2,012 δYZ values with a standard deviation approximately 
equal to 0.01400 fringe, which is the sought after value for the standard deviation of the random 
noise. The collection of all such δYZ values comprises the random fringe displacements shown in 
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Figure 5 versus Z/2,012. Each set of GRNi,h(r,t) was equated to a consecutive set of values within 
a single group of 2,012 δYZ values, such that, with the radial positions and the random fringe 
displacements sharing a common index, GRNi,h(rZ,t) = δYZ, where rZ-1 < rZ < rZ+1 holds for all rZ 
within the radial extrema. 
 

 
Figure 5. Simulated GRN, presented as the combined 49 groups of δYZ values versus Z/2,012. 
Within each group of 2,012 values, the mean value and standard deviation of δYZ are μRI = 0 and 
σRI = 0.01400 fringe, respectively. To obtain the δYZ values of this figure, first, the data shown in 
Figure 1 were, with no change in order relative to Z, split into 49 groups of 2,012 χZ values each. 
Within each group, the mean χZ-value was then subtracted from each individual χZ value, and 
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each resulting difference was multiplied by σRI = 0.01400 fringe to obtain a random fringe 
displacement, δYZ. The division of Z by 2,012 scales the abscissa to the population of each group. 
As such, the δYZ values are effectively plotted by group. Although the δYZ values of each group 
bear a slightly different proportionality to the χZ values shown in Figure 1, the axes of Figure 5 
can be viewed as the rescaled and exchanged axes of Figure 1. 
 
TINTINTINTIN    
 
Simulation of TINi,h(r)  
 
Each system was simulated in terms of the gravitational-potential-space parameter, ξ = r 2/2, 
where r is the radial position in the centrifuge (Moody, 2011). For the purpose of data output, 
however, spatial data were saved in terms of radial position, r = (2ξ )0.5. In terms of the radial 
position, r = rm = 6 cm was chosen for the meniscus position that corresponds to the lower 
system boundary, and r = rb = 7.2 cm was chosen for the base position that corresponds to the 
upper system boundary. (The lower and upper system boundaries are, respectively, identical to 
the innermost and outermost radial extrema of the system.) Starting from a time at which there 
are no concentration gradients, and proceeding at judiciously determined time intervals, 
concentration data for each system were repeatedly calculated at N = 900 spatial elements along 
the radial axis between the meniscus and the base of the system. In terms of ξ, the spatial 
increment, Δξ, was the same (Δξ = 8.8E-3 cm2) for every pair of adjacent spatial elements. 
The N spatial elements are indexed by j, and in terms of ξ, each is given by  

�d = �� + (| − 0.5)Δ�, 
(31) 
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where 1 ≤ j ≤ N, and ξm = rm2/2 is the gravitational-potential-spatial position of the meniscus. 
With the gravitational-potential-spatial position of the base given by ξb = rb2/2, ξm < ξj < ξb for 
any permitted value of j.  
 
As the radial position is given by     

Cd = �2�d = é2[�� + (| − 0.5)Δ�], 
(32) 
and as Δξ = [ξj+1 - ξj-1]/2 is constant with j, the average distance between adjacent radial 
positions, Δrj = [(2ξj+1)0.5 - (2ξj-1)0.5]/2, decreases as j increases. (See Equation 113 and its 
accompanying discussion.) For the systems under study here, Δrj ranges from Δr1 ≅ 1.46631E-3 
cm to ΔrN=900 ≅ 1.22243E-3 cm.  
 
The TIN was generated using combinations of logarithmic and cosine functions to which some 
common mathematical operations were applied. The initial function used to generate the TIN is 

zcòdf = Øm, þuv�Øt, + Ø�,h~M � òdØ�,��� + i�m,,e �h~M � ð�t,,e + òd��,,e��¹�,�,O�
elm , 

(33) 
in which 

òd = > w| + ∆| − 1ò�¿À − 1 y, 
(34) 
where xmax and Δj are positive integers. As applied here, Δj = 500 and xmax = 2,012. The index q 
applies to φq(xj), 7 variations of which were used as the basis of the TIN. Among the parameters 
of φq(xj), there is 1 set indexed by q, and 21 subsets that are indexed by q and u. The parameters 
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indexed by q alone, α1,q, α2,q, α3,q and α4,q, are listed in Table 4a. The parameters indexed by both q 
and u, β1,q,u, β2,q,u and β3,q,u, are shown in Table 4b. 
 

See Equations 33 and 34. 
 Øm, þuv �Øt, + Ø�,h~M � òdØ�,��� 

q α1,q α2,q α3,q α4,q 
1 -1 5.0 -0.3 220 2 1 4.0 0.9 200 3 1 6.0 -1.3 210 4 -1 7.0 1.6 230 5 1 8.0 -4.1 190 6 -1 3.8 -3.2 198 7 -1 8.7 2.5 215 Table 4a. Values chosen for parameters α1,q, α2,q, α3,q and α4,q of Equation 33. 

 
See Equations 33 and 34. 

 �m,,� �h~M � ð�t,,� + òd��,,���¹�,�,�  
 u = 2 u = 2 u = 3 

q β1,q,u β2,q,u β3,q,u β4,q,u β1,q,u β2,q,u β3,q,u β4,q,u β1,q,u β2,q,u β3,q,u β4,q,u 
1 0.12 1 190 1 0.020 1.6 110 1 0.013 2.1 50 2 2 0.10 1 200 1 0.025 2.0 100 1 0.010 2.0 60 2 3 0.16 1 217 1 -0.045 1.8 128 1 0.031 1.8 39 2 4 -0.27 1 232 1 0.081 1.5 84 1 -0.022 2.1 45 2 5 -0.16 1 221 1 -0.066 2.1 117 1 0.026 1.5 53 2 6 0.21 1 -208 1 0.072 2.3 -107 1 -0.018 1.3 -66 2 7 -0.33 1 -212 1 -0.037 1.3 -93 1 -0.029 2.3 -70 2 Table 4b. Values chosen for parameters β1,q,u, β2,q,u, β3,q,u and β4,q,u of Equation 33, where u = 1, u 

= 2 or u = 3.  
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Subjecting each instance of Equation 33 to various operations involving exponentiation, 
multiplication and addition yields  
 

Ñcòdf = �m, + �t, �i ��,,�pzcòdfq��,�,��
�lm �. 

(35) 
The index q applies to Aq(xj), 7 variations of which were carried forward to generate the TIN. 
Among the parameters of Aq(xj), there is 1 set indexed by q, and 49 subsets that are indexed by q 
and p. The parameters indexed by q alone, γ1,q and γ2,q, are listed in Table 5a. The parameters 
indexed by both q and p, γ3,q,p and γ3,q,p, are shown in Table 5b. 
 

See Equation 35. 
q γ1,q γ2,q 
1 -29 -0.05 2 17 0.09 3 -11 0.06 4 6 -0.04 5 -15 0.36 6 32 -0.13 7 -5 -0.07 Table 5a. Values chosen for parameters γ1,q and γ2,q of Equation 35. 

 
See Equation 35. 

 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 
q γ3,q,p γ4,q,p γ3,q,p γ4,q,p γ3,q,p γ4,q,p γ3,q,p γ4,q,p γ3,q,p γ4,q,p γ3,q,p γ4,q,p γ3,q,p γ4,q,p 
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1 2 -1 -8 -2 -5 -1 5 -2 -1 -1 -7 2 6 1 2 7 -2 -8 -1 -1 -2 -5 -1 2 -2 3 1 7 2 3 -5 -2 5 -2 -3 -2 -9 -2 -9 -1 -5 1 1 2 4 8 -2 -1 -1 1 -2 -2 -1 -5 -1 7 2 -4 2 5 -4 -2 7 -1 2 -1 -1 -2 -7 -2 2 1 -2 1 6 -6 -2 5 -2 9 -1 8 -1 4 -2 4 2 -9 1 7 2 -1 -3 -1 -4 -2 6 -2 -3 -2 -9 2 5 1 Table 5b. Values chosen for parameters γ3,q,p and γ4,q,p of Equation 35.  
 
Pairs of results from Aq(xj) were combined to obtain Bq(xj) (Table 6), pairs of results from Bq(xj) 
were combined to obtain Cq(xj) (Table 7), pairs of results from Cq(xj) were combined to obtain 
Dq(xj) (Table 8), and pairs of results from Dq(xj) were combined to obtain Eq(xj) (Table 9). 
 

 

Table 6. Values chosen for parameters ���  and  ��  of Equation 36, for which p = q + 1 if (q + 1) 
≤ 7, and p = (q - 7) + 1 if (q + 1) > 7, were the rules used to select the ordered pairs of indices p 
and q. For Aq(xj) and Ap≠q(xj), see Equation 35 and Table 5. 
 

Equation 36 
!còdf = p0.4Ñcòdf + 0.6Ñ�"còdfq��� +  ��  

q p ���   ��  
1 2 5.00 22 2 3 3.00 -22 3 4 2.60 0 4 5 1.25 0 5 6 0.90 0 6 7 1.60 -46 7 1 0.90 7 
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Equation 37 
Îcòdf = p0.4!còdf + 0.6!�"còdfq�#� +  #�  

q p �#�   #�  
1 3 2.2 -5 2 4 3.0 10 3 5 1.3 0 4 6 5.5 150 5 7 3.0 0 6 1 1.0 0 7 2 1.0 -22 Table 7. Values chosen for parameters �#�  and  #�  of Equation 37, for which p = q + 2 if (q + 2) 

≤ 7, and p = (q - 7) + 2 if (q + 2) > 7, were the rules used to select the ordered pairs of indices p 
and q. For Bq(xj) and Bp≠q(xj), see Equation 36 and Table 6. 
 

Equation 38 
Ïcòdf = p0.4Îcòdf + 0.6Î�"còdfq�$� +  $�  

q p �$�   $�  
1 5 1.2 27 2 6 1.0 0 3 7 2.6 16 4 1 1.4 -11 5 2 2.5 37 6 3 3.5 -55 7 4 1.2 -7 Table 8. Values chosen for parameters �$�  and  $�  of Equation 38, for which p = q + 4 if (q + 4) 

≤ 7, and p = (q - 7) + 4 if (q + 4) > 7, were the rules used to select the ordered pairs of indices p 
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and q. For Cq(xj) and Cp≠q(xj), see Equation 37 and Table 7. 
 

Equation 39 
%còdf = p0.4Ïcòdf + 0.6Ï�"còdfq�&� +  &�  

q p �&�   &�  
1 7 1.0 -7 2 1 1.2 0 3 2 1.3 0 4 3 1.0 0 5 4 1.0 0 6 5 1.5 10 7 6 1.3 0 Table 9. Values chosen for parameters �&�  and  &�  of Equation 39, for which p = q + 6 if (q + 6) 

≤ 7, and p = (q - 7) + 6 if (q + 6) > 7, were the rules used to select the ordered pairs of indices p 
and q. For Dq(xj) and Dp≠q(xj), see Equation 38 and Table 8. 
 
Combinations of results from Aq(xj) (Table 5), Bq(xj) (Table 6), Cq(xj) (Table 7), Dq(xj) (Table 8), 
and Eq(xj) (Table 9) were used to obtain Fq(xj) (Table 10), and pairs of results from Fq(xj) were 
combined to obtain Gq(xj) (Table 11). 

Equation 40 
Fcòdf = pÑcòdf + !êcòdf + Î¤còdf + Ï�còdf + %�còdfq��� +  ��  

q r s t u ���   ��  
1 2 3 4 5 0.3 30 2 3 4 5 6 0.4 –3 3 4 5 6 7 0.6 10 
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4 5 6 7 1 0.7 –20 5 6 7 1 2 0.4 –10 6 7 1 2 3 0.5 0 7 1 2 3 4 0.3 0 Table 10. Values chosen for parameters ���  and  ��  of Equation 40, in which the ordered 
quintuples of indices q, r, s, t and u are selected so that no index value is repeated in any given 
ordered quintuple, and each of the 7 possible index values appears 5 times among all ordered 
quintuples. For Aq(xj), Br(xj), Cs(xj), Dt(xj) and Eu(xj), see Equations 35 to 39 and Tables 5 to 9, 
respectively. 
 

Equation 41 
Kcòdf = �Fcòdf + F�"còdf2 � +  '�  

q p  '�  
1 5 -14 2 6 16 3 7 0 4 1 3 5 2 0 6 3 -7 7 4 -40 Table 11. Values chosen for parameter  '�  Equation 41, for which p = q + 4 if (q + 4) ≤ 7, and p 

= (q - 7) + 4 if (q + 4) > 7, were the rules used to select the ordered pairs of indices p and q. For 
Fq(xj) and Fq≠p(xj), see Equation 40 and Table 10.  
 
Each replicate, h, of each treatment group, i, was assigned a unique TINi,h(rj) function consisting 
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of one of the results from Dq(xj), Eq(xj), Fq(xj) and Gq(xj) (Table 12). For a given replicate, h, of a 
given treatment group, i, the same TINi,h(rj) function was added to the signal from each time, tϵ, at 
which data were analysed. 
 

KA = 30.325 ml/g ξm = 18 cm2, Δξ = 0.0088 cm2, N = 900 
treatment group TINi,h(rj) of replicates 

% KA > 0 i h = 1 h = 2 h = 3    
100 1 G1(xj) G2(xj) G3(xj)    
99 2 G7(xj) F7(xj) F6(xj)    
50 3 F2(xj) F1(xj) E7(xj)    
0 4 G4(xj) G5(xj) G6(xj)    

% KA > 0 i h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 
100 1 F5(xj) F4(xj) F3(xj) D7(xj) D6(xj) D5(xj) 
99 2 E3(xj) E2(xj) E1(xj) E6(xj) E5(xj) E4(xj) 

Table 12. Functions chosen for TINi,h(rj) of each replicate, h, of each treatment group, i. These 
functions are shown in Figures 6 and 7. 
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Figure 6. TINi,h(rj) versus rj for each replicate, h, of each treatment group, i. For i = 1: h = 9 (⎯⎯⎯), 
h = 8 (⎯⎯⎯), h = 7 (⎯⎯⎯), h = 6 (⎯⎯⎯), h = 5 (⎯⎯⎯), h = 4 (⎯⎯⎯), h = 3 (⎯⎯⎯), h = 2 (⎯⎯⎯), h = 1 
(⎯⎯⎯); for i = 2: h = 9 (⎯⎯⎯), h = 8 (⎯⎯⎯), h = 7 (⎯⎯⎯), h = 6 (⎯⎯⎯), h = 5 (⎯⎯⎯), h = 4 (⎯⎯⎯), h = 3 
(⎯⎯⎯), h = 2 (⎯⎯⎯), h = 1 (⎯⎯⎯); for i = 3: h = 3 (⎯⎯⎯), h = 2 (⎯⎯⎯), h = 1 (⎯⎯⎯); for i = 4: h = 3 
(⎯⎯⎯), h = 2 (⎯⎯⎯), h = 1 (⎯⎯⎯). 
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Figure 7. TINi,h(rj) - TINi,h(r450), where r450 ≅ 6.62655 cm, versus rj for each replicate, h, of each 
treatment group, i. For i = 1: h = 9 (⎯⎯⎯), h = 8 (⎯⎯⎯), h = 7 (⎯⎯⎯), h = 6 (⎯⎯⎯), h = 5 (⎯⎯⎯), h = 4 
(⎯⎯⎯), h = 3 (⎯⎯⎯), h = 2 (⎯⎯⎯), h = 1 (⎯⎯⎯); for i = 2: h = 9 (⎯⎯⎯), h = 8 (⎯⎯⎯), h = 7 (⎯⎯⎯), h = 6 
(⎯⎯⎯), h = 5 (⎯⎯⎯), h = 4 (⎯⎯⎯), h = 3 (⎯⎯⎯), h = 2 (⎯⎯⎯), h = 1 (⎯⎯⎯); for i = 3: h = 3 (⎯⎯⎯), h = 2 
(⎯⎯⎯), h = 1 (⎯⎯⎯); for i = 4: h = 3 (⎯⎯⎯), h = 2 (⎯⎯⎯), h = 1 (⎯⎯⎯). 
 
RINRINRINRIN    
 
Simulation of RINi,h(t)  
 
For each replicate, h, of each treatment group, i, a unique RINi,h(tϵ) function was assigned to each 
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time, tϵ, at which data were analysed (Table 12). Each RINi,h(tϵ) function consists of nothing more 
than an offset value (Table 13) that is added to the corresponding signal at every radial position, 
rj. 

  RINi,h(tϵ), in fringe, at t36 = 2160 s, t51 = 3060 s, t66 = 3960 s. 
% KA 
> 0 i h = 1 h = 2 h = 3    

t36, t51, t66 t36, t51, t66 t36, t51, t66    
100 1 -30, 17, -18 -30, -25, -42 18, 25, 37    
99 2 -4, 55, 31 19, -6, 38 4, -41, 17    
50 3 -10, -51, 7 -65, -22, -34 -4, 38, 47    
0 4 14, -49, -23 -22, 17, 7 -9, -36, -12    

% KA 
> 0 i h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 

t36, t51, t66 t36, t51, t66 t36, t51, t66 t36, t51, t66 t36, t51, t66 t36, t51, t66 
100 1 16, 48, -9 -7, -21, 13 62, 24, 42 -12, -28, 26 15, 54, 3 21, -26, -32 
99 2 -15, 46, 13 11, -12, -43 6, -39, 23 20, -8, -23 -43, 14, -19 7, -28, 18 

Table 13a. The RINi,h(tϵ) functions, each of which is simply an offset value that is added to the 
signal at every radial position, rj, of replicate h of treatment group i at time tϵ. For RINi,h(t1), 
where t1 is the earliest time at which data were recorded, see Table 13b. In minutes, t36 = 2160 s 
corresponds to 36 min, t51 = 3060 s corresponds to 51 min, t66 = 3960 s corresponds to 66 min. 
 
By Equation 4, at each radial position, rj, NFSi(rj,t0) = (0.1 g/ml)Lkλ = 75 fringe, where, for any 
treatment group, i, 0.1 g/ml is the total solute concentration at each radial position at t0. By 
definition, RINi,h(t0) = NMSi,h(rj,t0) - NFSi(rj,t0) - TINi,h(rj) - GRNi,h(rj,t0). 
 
Equation 7 gives the substantially noise-cancelled signal for replicate h of treatment group i at 
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radial position rj and time tϵ as Yi,h(rj,tϵ) = NMSi,h(rj,tϵ) - NMSi,h(rj,tα), where NMSi,h(rj,tϵ) is the 
actual signal at a time tϵ, while NMSi,h(rj,tα) is the signal at the earliest recorded time, tα. For each 
treatment group, the earliest recorded time was at 1 minute. Thus, tα of Equation 7 is equated to 
t1 = 60 s. 
 
In a real experiment, a few minutes would elapse before the rotor reached the speed of 60,000 
RPM that applies to the simulated AUC presented here. Thus, in a real experiment, the effective 
centrifugation time upon reaching a chosen RPM would always be less than the actual time to 
reach it (Moody, 2012b: Equation 12). For the simulated AUC presented here, the rotor speed 
was treated as accelerating from 0 to 60,000 RPM at the instant the simulated experiment 
started, so t1 = 60 s is the effective centrifugation time, for which the actual time would probably 
be 120 s to 180 s. 
 
Times as late as 11 min could have been chosen for tα while still providing that the region devoid 
of concentration gradients completely encompassed the radial positions at which data were 
analysed at all subsequent times (Moody, 2012a: Figures 1 and 2, for which KA = 30.325 ml/g, 
and Figures 8 and 9, for which KA is undefined), which is all that is required of data that must 
serve as NMSi,h(rj,tα) in Equation 4. Graphically, however, setting tα to t1 = 60 s maximises the 
distinction between the data from tα and the data from each subsequent time, tϵ >> 60 s. Thus, tα 
was set to t1 = 60 s solely for looks (Figures 12 to 19). 
 
At t1, the total solute concentration, ci(rj,t1), of any treatment group, i, will no longer be uniform 
with respect to radial position, and thus the values of NFSi(rj,t1) = ci(rj,t1)Lkλ will have changed 
from their respective values at t0, with the most significant changes occurring near the extrema. 
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Away from a small percentage of positions that lie near the extrema, however, the total solute 
concentration, ci(rj,t1), will be uniform, and will differ from ci(rj,t0) only slightly.  
 
Table 13b gives the values of RINi,h(t1), which are equated to -NFSi(r450,t1). Thus, for each 
replicate, h, of treatment group, i, RINi,h(t1) is equated to -1 times the value of NFSi(rj,t1) in the 
region where it is uniform. As such, RINi,h(t1) + NFSi(rj,t1) = 0 in the region where NFSi(rj,t1) is 
uniform, so that NMSi,h(rj,t1) = TINi,h(rj) + GRNi,h(rj,t1) at most radial positions. (By definition, 
NMSi,h(rj,t1) = TINi,h(rj) + GRNi,h(rj,t1) + RINi,h(t1) + NFSi(rj,t1).) 
 

 NMSi,h(rj,t1) = TINi,h(rj) + GRNi,h(rj,t1) where RINi,h(t1) + NFSi(rj,t1) = 0 
% KA > 0 i h rj where RINi,h(t1) + NFSi(rj,t1) = 0 RINi,h(t1) (fringe) 

100 1 1 ≤ h ≤ 9 r42 < rj < r858 -74.995439436203660 
99 2 1 ≤ h ≤ 9 r41 < rj < r859 -74.995427091651645 
50 3 1 ≤ h ≤ 3 r43 < rj < r858 -74.995072449176778 
0 4 1 ≤ h ≤ 3 r31 < rj < r864 -74.995439436203897 

Table 13b. The RINi,h(t1) functions, each of which is simply an offset value that is added to the 
signal at every radial position, rj, of replicate h of treatment group i at time t1 = 60 s (1 min). 
Away from the radial extrema, the NFSi(rj,t1) values are constant with rj, and are little changed 
from the NFSi(rj,t0) values. (At each radial position, rj, NFSi(rj,t0) = (0.1 g/ml)Lkλ = 75 fringe.) 
 
Between the elimination of redundant values of w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  (Equation 8; Figures 24 to 27) from 
qi,h(MNO∗ ) (Equation 9b; Figures 28 to 31) and the application of masks (Figures 20 to 23; Figure 
32) to g(s*) (Figures 33 to 36), analysis was limited to data that lay well within radial positions 
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where NMSi,h(rj,t1) = TINi,h(rj) + GRNi,h(rj,t1) held (Table 13b).  
 
GRNGRNGRNGRN    
 
Simulation of GRNi,h(r,t)  
 
For each replicate, h, of each treatment group, i, a unique set of GRNi,h(rj,tϵ) values was assigned 
to each time, tϵ, at which data were analysed (Table 12a). Each set of GRNi,h(rj,tϵ) consists of a 
subset of N of the δYZ values shown in Figure 5, such that the index Z of δYZ is equal to ΔZi,h(tϵ) 
plus the index j of rj , where ΔZi,h(tϵ) is an offset value that is unique to each time, tϵ, for each 
replicate, h, of each treatment group, i, and where the ΔZi,h(tϵ) values are chosen to ensure that no 
δYZ value is equated to more than one GRNi,h(rj,tϵ) value. The 96 ΔZi,h(tϵ) values used can be 
calculated from the information given in Table 14a and its legend, but do not follow a consistent 
pattern with respect to i, h or tϵ, as no extraordinary effort was made to follow a pattern during 
the process of assembling illustrative treatment groups. That process was iterative, and in each 
iteration of it, the pattern of ΔZi,h(tϵ) assignments was disrupted as replicates were added to 
some treatment groups and removed from others. (In the last iteration of the process, one entire 
treatment group was eliminated, and its replicates distributed to another treatment group.) 
Using Table 14b, however, each value of ΔZi,h(tϵ) can readily be mapped to an equivalent offset 
given by  

∆Ê(Φ, >, >ëÀ�ê¿) = i([z − 1]> + [)z − 1* Ë~¶ 2]>ëÀ�ê¿)+
Nlm , 

(42) 
where N = 900 and Nextra = 212. The range of Φ is limited to 1 ≤ Φ ≤ Φmax, where 
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Φ,-. = 2 + / i i vA
k¢

Blm
0

Alm , 
(43) 
where g is the total number of treatment groups, ni is the number of replicates of treatment 
group i, and τ is the number of times at which data are collected. Including the earliest recorded 
time, τ = 4. With g = 4, n1 = 9, n2 = 9, n3 = 3 and n4 = 4, Equation 43 yields Φmax = 98. As can be 
seen from the entries in Table 14b, the two highest values of Φ, 97 and 98, were not needed, as 
the last 2,012 random numbers were not used. 

For each replicate, h, of each treatment group, i. 
 GRNi,h(rj,tϵ) at tϵ equal to t1 = 60 s, t36 = 2160 s, t51 = 3060 s and t66 = 3960 s. 
i h = 1 h = 2 h = 3    

t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66    
1 1a, 2a, 3a, 4a 1a, 2a, 3a, 4a 5a, 6a, 7a, 5a    
2 6b, 6b, 7b, 7b 1c, 1c, 2c, 2c 3c, 3c, 4c, 4c    
3 4d, 4d, 5d, 5d 6d, 6d, 7d, 7d 1e, 1e, 2e, 2e    
4 6a, 7a, 1b, 1b 2b, 2b, 3b, 3b 4b, 4b, 5b, 5b    
i h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 

t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66 
1 5c, 5c, 6c, 6c 7c, 7c, 1d, 1d 2d, 2d, 3d, 3d 1g, 1g, 2g, 2g 3g, 3g, 4g, 4g 5g, 5g, 6g, 6g 
2 2f, 2f, 3f, 3f 4f, 4f, 5f, 5f 6f, 6f, 7f, 7f 3e, 3e, 4e, 4e 5e, 5e, 6e, 6e 7e, 7e, 1f, 1f 

Table 14a. Sets of GRNi,h(rj,tϵ). The δYZ values shown in Figure 5 were sequentially organised with 
respect to the index Z into 7 groups, a, b, c, d, f, and g, each consisting of 7 columns of 2,012 
numbers. The columns of each group were numbered 1 through 7. Each column was populated 
with 2,102 δYZ values that, consecutively from the 1st to the 2,012th column entry, were ordered 
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as they occur with respect to Z in the original set of 98,588 values. Columns were filled in 
numerical order from 1 to 7 within each group, and groups were filled in alphabetical order from 
a to g. (With respect to Z, the first set of 2,012 δYZ values were placed in column 1 of group a, the 
second set of 2,012 δYZ values were placed in column 2 of group a, etcetera, until, penultimately, 
the forty-eighth set of 2,012 δYZ values were placed in column 6 of group g, and, lastly, the forty-
ninth set of 2,012 δYZ values were placed in column 7 of group g.) Either the first 900 or the 
second 900 entries of a column were equated to GRNi,h(r,t) and added to the 900 signal values of 
an NFSi(rj,tϵ) being evaluated. Where the first 900 entries of a column were added to the 
NFSi(rj,tϵ) values, the number of that column is shown as a superscript preceding the letter of the 
group to which the column pertains. Where the second 900 entries of a column were added to the 
NFSi(rj,tϵ) values, the number of that column is shown as a subscript preceding the letter of the 
group to which the column pertains. No column entry was added to more than one NFSi(rj,tϵ) 
signal. The last 212 values of each column were never used, and none of the values from column 
7 of group g was ever used.  
 

For each replicate, h, of each treatment group, i. 
 GRNi,h(rj,tϵ) at tϵ equal to t1 = 60 s, t36 = 2160 s, t51 = 3060 s and t66 = 3960 s. 
i h = 1 h = 2 h = 3    

t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66    
1 1, 3, 5, 7 2, 4, 6, 8 9, 11, 13, 10    
2 25, 26, 27, 28 29, 30, 31, 32 33, 34, 35, 36    
3 49, 50, 51, 52 53, 54, 55, 56 57, 58, 59, 60    
4 12, 14, 15, 16 17, 18, 19, 20 21, 22, 23, 24    
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i h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 
t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66 t1, t36, t51, t66 

1 37, 38, 39, 40 41, 42, 43, 44 45, 46, 47, 48 85, 86, 87, 88 89, 90, 91, 92 93, 94, 95, 96 
2 73, 74, 75, 76 77, 78, 79, 80 81, 82, 83, 84 61, 62, 63, 64 65, 66, 67, 68 69, 70, 71, 72 

Table 14b. The Φ value corresponding to each set of GRNi,h(rj,tϵ). Using Equation 42, the 
tabulated values of Φ are used to calculate ΔZ(Φ,N,Nextra), where N = 900 and Nextra = 212. Given 
the tabulated values of Φ, i, h and tϵ, each value of ΔZi,h(tϵ) can be assigned its equivalent value of 
ΔZ(Φ,N,Nextra). Following the pattern in Table 14a, where the first 900 adjusted random numbers 
of a column were equated to GRNi,h(r,t) and added to the NFSi(rj,tϵ) values, the corresponding Φ 
value is superscripted, where the second 900 adjusted random numbers of a column were 
equated to GRNi,h(r,t) and added to the NFSi(rj,tϵ) values, the corresponding Φ value is 
subscripted. In minutes, t1 = 60 s corresponds to 1 min, t36 = 2160 s corresponds to 36 min, t51 = 
3060 s corresponds to 51 min, t66 = 3960 s corresponds to 66 min. 
 
As previously noted, the δYZ values of Figure 5 were obtained from the χZ values in Figure 1. 
Thus, if in place of the δYZ values of Figure 5, the corresponding χZ values in Figure 1 were placed 
into the columns given by Tables 14a and 14b, two adjustments to each column of χZ values 
would yield each column of δYZ values. In the first adjustment, the mean of each column of 2,012 
χZ values would be subtracted from each individual column value to obtain a column of 
normalised χZ values for which the mean was as close to zero as error allowed, and the standard 
deviation was approximately 1. In the second adjustment, each normalised χZ value of each 
column would be multiplied by σRI to obtain a column of δYZ values having a standard deviation 
approximately equal to the sought after value of 0.01400 fringe. 
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NFSNFSNFSNFS    
 
Details regarding the model systems from which the treatment groups are constructed 
 
Two imaginary, aqueous systems were designed. It was assumed that T = 20.00°C throughout 
both systems at all times. In each system, the buffer is defined as the implicit solvent, which is 
modelled as having sufficient D2O to render its density, ρ0, equal to the mean density, 

Ò2 = 1v i 3j
k

jlm , 
(44)  
of the particles of all PS-bead species, where ρk is the density (as particle mass per particle 
volume) of PS-bead species k. The ρk values are shown in Table 15, and their mean value is μρ = 
1.08225 g/ml. (As used here, the density of a solute species is equal to the mass of one of its 
particles divided by the volume of one of its particles.) 
 
The aqueous buffer chosen as the model for the implicit solvent consists of 71.23% D2O, 0.15 M 
NaCl, 20 mM NH4HCO3 and pH 7.0 at 20.00°C (Moody, 2012a), where the amount of D2O is given 
in volume-percent. At 20.00°C, the calculated density, ρ0, of this buffer equals the desired value of 
μρ = 1.08225 g/ml. (The density of such a buffer at 20.00°C would be 1.00594 g/ml at 0% D2O.) 
The calculated viscosity, η, of this buffer at 20.00°C is 0.010196 poise. These density and viscosity 
calculations were performed using the Sedimentation Interpretation Program, Sednterp (Laue et 
al., 1992), version 1.09. (Sednterp is available at http://www.rasmb.bbri.org/software/, the 
Analytical Ultracentrifugation Software Archive of the Reversible Associations in Structural and 
Molecular Biology (RASMB) website.) 
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name index k ck (mg/ml) at t = 0 

ρk (g/ml) 56jx = 13j  (ml/g) 
Mk (g/mol) Ôjx (cm-2) at 60,000 RPM 

Mjx (Svedberg) 
H 1 33.891892 1.11150 0.89969 9,462,869 403.343 9.324  2 0.041667 1.11075 0.90029 9,456,483 393.001 9.084  3 0.041667 1.11000 0.90090 9,450,098 382.659 8.845  4 0.041667 1.10925 0.90151 9,443,713 372.316 8.606  5 0.041667 1.10850 0.90212 9,437,328 361.974 8.367  6 0.041667 1.10775 0.90273 9,430,943 351.632 8.128  7 0.041667 1.10700 0.90334 9,424,557 341.290 7.889  8 0.041667 1.10625 0.90395 9,418,172 330.948 7.650  9 0.041667 1.10550 0.90457 9,411,787 320.606 7.411  10 0.041667 1.10475 0.90518 9,405,402 310.264 7.172  11 0.041667 1.10400 0.90580 9,399,017 299.922 6.933  12 0.041667 1.10325 0.90641 9,392,631 289.579 6.694  13 0.041667 1.10250 0.90703 9,386,246 279.237 6.455 LH 14 33.000000 1.08225 0.92400 18,427,691 0 0  15 0.041667 1.06200 0.94162 9,041,445 -279.237 -6.455  16 0.041667 1.06125 0.94229 9,035,060 -289.579 -6.694  17 0.041667 1.06050 0.94295 9,028,675 -299.922 -6.933  18 0.041667 1.05975 0.94362 9,022,290 -310.264 -7.172  19 0.041667 1.05900 0.94429 9,015,904 -320.606 -7.411  20 0.041667 1.05825 0.94496 9,009,519 -330.948 -7.651  21 0.041667 1.05750 0.94563 9,003,134 -341.290 -7.889  22 0.041667 1.05675 0.94630 8,996,749 -351.632 -8.128  23 0.041667 1.05600 0.94697 8,990,364 -361.974 -8.367  24 0.041667 1.05525 0.94764 8,983,978 -372.316 -8.606  25 0.041667 1.05450 0.94832 8,977,593 -382.659 -8.845  26 0.041667 1.05375 0.94899 8,971,208 -393.001 -9.084 L 27 32.108108 1.05300 0.94967 8,964,823 -403.343 -9.324  

Table 15. The major distinguishing characteristics of the model solute particles. Except for 
species 14 (LH), all particles are modelled as monomeric spheres. At 20.00°C, ρ0, the density of 
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the hypothetical buffer, is equal to ρ14, the density of species 14. Equation 47 describes ρk, the 
inverse of which is equated to 56jx, the partial specific volume of species k in the zero-
concentration limit (Equation 54). Equation 50 describes Mk, Equation 54 describes Ôjx, and 
Equations 56 to 58 describe Mjx. Further details about the characteristics of the model particles 
and the hypothetical buffer have been described previously (Moody, 2012a).  
 
The empirical formula of polystyrene (PS) at 0% 1H-to-D substitution is CH, and the empirical 
formula of PS at 100% 1H-to-D substitution is CD. With m defined as the applicable multiplicity of 
the empirical formula, the molecular formula of PS at 0% 1H-to-D substitution is (CH)m, for which 
the molar mass is denoted as ?(78)÷ , and molecular formula of PS at 100% 1H-to-D substitution 
is (CD)m, for which the molar mass is denoted as ?(79)÷ . A PS molecule with a 1H-to-D 
substitution between 0% and 100% will have a molar mass that lies within ?(78)÷ ≤
?[(78)÷½∆÷�(79)∆÷] ≤ ?(79)÷ , where 0 ≤ Δm ≤ m, a general formula for which can be written as 

?[(78)÷½∆÷�(79)∆÷] ≅ (Ë − ∆Ë)(?7 + ?8) + (∆Ë)(?7 + ?9), 
(45a) 
where MC ≅ 12.0111 g/mol is an approximate average molar mass for all isotopes of carbon 
found on Earth, MH ≅ 1.007947 g/mol is an approximate average molar mass for all isotopes of 
hydrogen found on Earth, and MD ≅2.014102 g/mol is the approximate molar mass of deuterium. 
For PS molecules of equal multiplicity m, the ratio of the molar mass of those at 100% 1H-to-D 
substitution to these at 0% 1H-to-D substitution, ?(79)÷: ?(78)÷ , is estimated as 

?(79)÷?(78)÷ = ?(79)¸?(78)¸ = ?79?78 = ?7 + ?9?7 + ?8 ≅ 1.07728. 
(45b) 
For a 30 nm diameter PS bead at any level of 1H-to-D substitution, m ≅ 688,593, assuming 
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atmospheric pressure applies and T = 293.15 K. 
 
In the AUC simulations conducted for this study, it was assumed that the elevated pressures 
found within the pressure gradients of a part aqueous, part heavy-water system subjected to AUC 
would not affect the size or shape of the PS beads. With gE, the cgs standard acceleration due to 
gravity, being approximately 981 cm/s2 at sea level on Earth, At a given radial position, r, the 
relative centrifugal force, RCF, is given by (rω2/gE) × gE., where ω is the angular velocity 
(Equation 55) of the rotor. At 60,000 RPM, the RCF ranges from 233,410 × gE at r = 5.8 cm, which 
is close to the innermost detectable point, to 289,750 × gE at r = 7.2 cm, which is close to the 
outermost detectable point. (For the calculation of ω from RPM, see Equation 55.) 
 
At ξ = r2/2 (Equation 31), where rm < r < rb. Due to the net flow of matter within the system 
prior to reaching equilibrium, ρ, the density of the solution, depends on t and ξ. At any given time, 
however, the ξ dependence of the pressure can be approximately described by treating the 
system as if it were hydrostatic. For a system subjected to AUC, the hydrostatic pressure of a 
solution of ξ-dependent density ρ is given by the applicable form of Bernoulli’s equation (Moody, 
2011: Equation A8), ï = ïx + st º 3¶�:ø:÷ , where P0, the pressure at rm, is assumed equal to 
1.013E+6 dyne/cm2, which is the cgs-equivalent of 1 atmosphere. For the systems described 
here, if ρ were everywhere equal to ρ0 = 1.08225 g/ml, then at 60,000 RPM, P/P0 would range 
from 1 at rm = 6 cm to approximately 385 at rb = 7.2 cm. (The density of the hypothetical buffer 
at 20.00°C and P = P0 is ρ0 = 1.08225 g/ml.) 
 
With %D defined at the percent of 1H-to-D substitution, the density of a PS bead of %D is 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

83 

 

3%9 = 3x% + (3mxx% − 3x%)%D100% , 
(46) 
where ρ0% = ρL = 1.05300 g/ml and ρ100% = ρCD = ρ0%MCD/MCH = 1.13438 g/ml. The PS-bead 
species with the highest density is ρH = ρ76% = 1.11150 g/ml. Figure 8 shows ρ%D as a function of 
%D. Figure 9 shows ρk as a function of k, an equation for which is 

3j = 3k + [(v − 1)(3 − Øj) + 1 − n]∆3, 
(47) 
where Δρ = 0.00075 g/ml is an increment of the density, n = 27 is the upper value of k, αk<14 = 0, 
αk=14 = 1 and αk>14 = 2. This equation yields the values of ρk, including ρn=27 = 1.05300 g/ml, 
shown in Table 15. 
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Figure 8. Density, ρ%D, versus %D, with ρ%D>36% > ρ0 (�), ρ%D=36%= ρ0 (�) and ρ%D<36% < ρ0 
(�). The relationship is given by Equation 46, 3%9 = 3x% + (2¸;;%�2;%)%9mxx% , where ρ0% = ρL = 
1.05300 g/ml, ρ100% = 1.13438 g/ml. The PS-bead species with the highest density is ρH = ρ76% = 
1.11150 g/ml. 
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Figure 9. Density, ρk, versus k, with ρk<14 > ρ0 (�), ρk=14 = ρ0 (�) and ρk>14 < ρ0 (�). The 
relationship is given by Equation 47, 3j = 3k + [(v − 1)(3 − Øj) + 1 − n]∆3, where n = 27, ρn = 
ρL = 1.05300 g/ml, Δρ = 0.00075 g/ml, αk<14 = 0, αk=14 = 1 and αk>14 = 2. The values of all ρk are 
shown in Table 15. 
 
Being composed of one part L, the volume of which is VL, and one part H, the volume of which is 
VH, the density of LH is 
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3�< = =�3� + =<3<=� + =< = =�3� + =<3<=�< , 
(48) 
where VLH = VL + VH is the volume of LH. For every species except LH (k = 14), the solute 
particles are spheres with an anhydrous radius of Rk≠14 = 1.5E-6 cm, so that 

=j"m� = 4ðJj"m��3  
(49) 
is approximately equal to 1.41372E-17 ml. With V27 = VL and V1 = VH, VLH = VL + VH is the 
volume of LH, as previously noted with respect to the denominator of Equation 48.  
 
With Avogadro’s number represented by NA, the molar mass of every species is given by 

?j = >>3j=j , 
(50) 
the values of which are listed in Table 15.  
 
PS-bead species LH (k = 14) is defined as a dimer composed of two spherical particles, PS-bead 
species L (k = 27) and PS-bead species H (k = 1). As such, PS-bead species LH would not be 
spherical, but for simplicity of calculation, the anhydrous radius of its equivalent sphere is 
defined as 

J�< ≡ ? 3?�<4ð>>3�<@ = ?3(?� + ?<)4ð>>3�<@ ≅ 1.88988E − 6 cm, 
(51) 
where ρLH is given by Equation 49. By virtue of this definition, 
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=j = 4ðJj�3  
(52) 
holds for each species, including LH (k = 14).  
 
Using Rk, the diffusion coefficient of each solute in the zero-concentration limit is calculated as 

limA→x Ïj = Ïjx = JH6ð>>BℎjJj , 
(53) 
where R is the ideal gas constant, T = 293.15 K is the absolute temperature, Dk is the diffusion 
coefficient of solute species k, and hk is the hydration factor of solute species k in the limit as c, 
the total solute concentration, approaches zero. With hk = 1/0.65 used for each solute species, k, 
Ïj"m�x  = 9.12567E-8 cm2/s and Ïm�x  = Ï�<x  = 7.24305E-8 cm2/s. 
 
The reduced molar mass of each solute in the zero-concentration limit is calculated as 

limA→x Ôj = Ôjx = ?j ¦1 − 3x3j¨ st
JH , 

(54) 
where σk is the reduced molar mass of solute species k, T = 293.15 K is (again) the absolute 
temperature, ρ0 = 1.08225 g/ml is the density of the solution in the limit as c approaches zero, 
1/ρk = 56jx is the partial specific volume of species k in the limit as c approaches zero, and ω is the 
angular velocity of the rotor, which is calculated from the rotor speed in RPM (rotations per 
minute) as 

s = 2ð w RPM60 s minÂ y. 
(55) 
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During the full course of each simulated AUC experiment presented here, the simulated rotor 
speed was 60,000 RPM. Thus, the start of each experiment at t0 = 0 s marks the time at which the 
rotor was modelled as having instantly accelerated from 0 RPM to 60,000 RPM. 
 
The sedimentation coefficient of species k in the limit as c approaches zero is 

Mjx = ÔjxÏjxst . 
(56) 
With the right-hand sides of Equation 54 for Ôjx and Equation 53 for Ïjx substituted into the 
preceding equation for Mjx results in 

Mjx = ?j ¦1 − 3x3j¨6ð>>BℎjJj . 
(57) 
Substituting the right-hand side of Equation 50 for Mk in Equation 57, and then substituting the 
right-hand side of Equation 52 for Vk in the result, yields 

Mjx = 2Jjt(3j − 3x)9Bℎj . 
(58) 
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Figure 10. On the left-hand ordinate: Mjx (s), the sedimentation coefficient of species k in the limit 
as c approaches zero (Equations 56 to 58), versus ρk (g/ml), with MjÁm�x  > 0 (�), Mjlm�x = M�<x  = 0 
() and Mj¾m�x  < 0 (�). The highest value of Mjx is that of solute species H (k = 1). The lowest 
value of Mjx is that of solute species L (k = 27). The values of all Mjx are shown in Table 15. On the 
right-hand ordinate: Ôjx (cm-2), the reduced molar mass of species k in the limit as c approaches 
zero (Equation 54), versus ρk (g/ml), with ÔjÁm�x  > 0 (�), Ôjlm�x = Ô�<x  = 0 (�) and Ôj¾m�x  < 0 
(�). The highest value of Ôjx is that of solute species H (k = 1). The lowest value of Ôjx is that of 
solute species L (k = 27). The values of all Ôjx are shown in Table 15. For the solute species in 
question, the ordinate axes can be, and in this case are, scaled so that, for each value of k, the 
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symbol for Ôjx is superimposed on the symbol for Mjx. 
 
The transport of species k is coupled to the effect of species q on the thermodynamic nonideality 
of the system through yk,qcq, where cq is the concentration of species q, 

Cj, = 43 
(59) 
and ρq is the density of species q.  
 
The transport of species k is coupled to the effect of species q on the viscosity of the system 
through hk,qcq, where cq is the concentration of species q, 

ℎj, = 2.53  
(60) 
and ρq is the density of species q.  
 
For all k, the c-dependent diffusion coefficient is 

Ïj = Ïjx �1 + D Cj,hklm1 + D ℎj,hklm �. 
(61) 
At t = 0, c1<k<14 = c14<k<27 = 4.16667E-5 g/ml, cH = c1 = 3.38918E-2 g/ml, cLH = c14 = 3.30000E-2 
g/ml and cL = c27 = 3.2108E-2 g/ml throughout the system, so that Dk≠14 = 9.12567E-8 cm2/s 
and D14 = DLH = 7.24305E-8 cm2/s everywhere at t = 0.  
 
The volume fraction of each species q is 
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z = h3 < pzq�¿À ≤ 1, 
(62) 
where cq is the mass concentration of solute species q, ρq is the density of species q and pzq�¿À 
is the maximum volume fraction of solute species q. With ρq assumed to be c-independent for all 
solutes, pzq�¿À is given by 

limAE��→x � limA�→pA�q÷øù z� = limA→pA�q÷øù z = phq�¿À3 = pzq�¿À, 
(63) 
where phq�¿À is the maximum concentration of solute species q in the limit as every ck≠q 
approaches zero. (A measure of phq�¿À is presented in the discussion that follows Equation 66, 
and an alternative definition of pzq�¿À is given by Equation 67.) For each solute species, pzq�¿À 
is assigned a value of 0.5. (In general, 0 ≤ pzq�¿À ≤ 1.) Thus, for each solute species, pzq�¿À is 
treated as if it were a constant. 
 
The transport of species k ≠ 14 is coupled to the effect of species q on the density of the system 
through pk≠14,qcq, where cq is the concentration of species q, 

ój"m�, = 13pzq�¿À F
¦1 − 33j¨ − ¦1 − 3x3j¨

¦1 − 3x3j¨ G = −13pzq�¿À ô3 − 3x3j − 3xõ, 
(64) 
ρk is the density of species k, ρq is the density of species q, and ρ0 is the density of the implicit 
solvent.  
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The transport of any solute species, including k = 14, is coupled to the effect of species q on the 
density of the system through (σp)k,qcq, where cq is the concentration of species q, 

(Ôó)j, = Ôjxój, = st?jJH3j þ 3x − 33pzq�¿À�, 
(65) 
ρk is the density of species k, ρq is the density of species q, ρ0 is the density of the implicit solvent, 
Ôjx is the reduced molar mass of species k in the limit as c approaches zero (Equation 54) and the 
rest of the parameters are as defined previously.  
 
For k ≠ 14, the c-dependent reduced molar mass is given 

Ôj"m� = Ôjx �1 + D ój,hklm1 + D Cj,hklm �. 
(66) 
For k ≠14, substituting the right-hand side of Equation 64 for pk,q shows that σk = 0 when ck = 
3j[zj]�¿À  and each cq≠k = 0. (As pk,q=14 = 0 for all k, σk≠14 = 0 when ck≠14 = 3j[zj]�¿À even if 
cq=14 is greater than zero, provided that every other cq≠k = 0.) As the sedimentation coefficient 
(Equation 70) of solute species k is zero when σk = 0, there is no net transport of species k where 
(∂ck/∂r)t = 0 and σk = 0. Thus, for k ≠14, 3j[zj]�¿À can be viewed as a measure of [hj]�¿À.  
 
If solute species q could be concentrated to the point that no solvent remained in its presence, 
then phq�¿À would be equal to ρq, provided that, as is assumed here, no voids took the place of 
the missing solvent. Thus, the actual phq�¿À is equal to its theoretical maximum of ρq minus the 
mass of solvent that cannot be removed from a given volume in which no further concentration 
of solute species q is possible. Applying this concept to pzq�¿À in Equation 63 results in 
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pzq�¿À = phq�¿À3 = 3 − pIq�¿À3x3 , 
(67) 
where pIq�¿Àis defined as the (dimensionless) hydration factor of solute species q, such that 
pIq�¿À3x is the amount of solvent that cannot be removed from the particles of solute species q 
at c = cq = phq�¿À. Solving Equation 67 for pIq�¿À yields 

pIq�¿À = 33x ¦1 − pzq�¿À¨ = 3 − phq�¿À3x . 
(68) 
As the solvent and the solute particles are all treated as being incompressible, ρ0 and each value 
of ρq are constants. Furthermore, as each value of pzq�¿À is treated as being a constant, each 
value of phq�¿À is a constant. Thus, each value of pIq�¿À is also a constant. 
 
For any solute species, including k = 14, the c-dependent reduced molar mass is given by 

Ôj = Ôjx + D (Ôó)j,hklm1 + D Cj,hklm . 
(69) 
For k ≠ 14, Equation 69 yields the same results as Equation 66. Thus, Equation 69 works for all k, 
and is more general than Equation 66. Moreover, it is by virtue of Equation 69 that σk=14 can be 
nonzero even though Ôjlm�x  = 0.  
 
For any solute species, k, the c-dependent sedimentation coefficient is given by 

Mj = ÔjÏjst . 
(70) 
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Figure 11. On the left-hand ordinate: Mj (s), the concentration-dependent sedimentation 
coefficient of species k at t = 0 (Equation 70), versus ρk (g/ml), with MjÁm� > 0 (�), Mjlm� = M�< 
= 0 () and Mj¾m� < 0 (�). The highest value of Mj is that of solute species H (k = 1). The lowest 
value of Mj is that of solute species L (k = 27). On the right-hand ordinate: Ôj (cm-2), the 
concentration-dependent reduced molar mass of species k at t = 0 (Equations 66 and 69), versus 
ρk (g/ml), with ÔjÁm� > 0 (�), Ôjlm� = Ô�< = 0 (�) and Ôj¾m� < 0 (�). The highest value of Ôj is 
that of solute species H (k = 1). The lowest value of Ôj is that of solute species L (k = 27). At t = 
0, the solute concentrations (column ck of Table 15) are invariant with radial position. For the 
solute species in question, the ordinate axes can be, and in this case are, scaled so that, for each 
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value of k, the symbol for Ôj is superimposed on the symbol for Mj .  
 
Henceforth, as needed to distinguish the reactive species from their single-species-component 
counterparts, the reactive species of H, LH and L are denoted as H+, LH+ and L+, respectively, and 
the single-species components of H, LH and L are denoted as H-, LH- and L-, respectively. Thus, the 
mass-action association/dissociation reaction for which KA = 30.325 ml/g at 20.00°C is written 
as 

I� + r�
nì� > 0⇌nê� > 0rI�, 

(71) 
where kf+ = 30,000 [ml/g]/s and kr+ = kf+/KA ≅ 989.277 s are the forward and reverse rate 
constants, respectively, while the corresponding interaction for which KA is undefined at 20.00°C 
would be written as 

I� + r�
nì� = 0⇌nê� = 0rI�, 

(72) 
where kf- = 0 [ml/g]/s and kr- = 0 s are the forward and reverse rate constants, respectively.  
 
The concentrations of H+, LH+ and L+ are written as cH+, cLH+ and cL+, respectively. The 
concentrations of H-, LH- and L- are written as cH-, cLH- and cL-, respectively. The concentrations of 
H, LH and L are redefined as cH = cH- + cH+, cLH = cLH- + cLH+ and cL = cL- + cL+, respectively. As 
such, it remains true that, in the absence of concentration gradients, cH/MH = 2(cLH/MLH) = 
cL/ML. Table 16 and its accompanying legend present the concentrations of all solute species of 
each treatment group at t = 0. 
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i 

(% KA > 0) 
cH- (g/ml) cLH- (g/ml) cL- (g/ml) cH+ (g/ml) cLH+ (g/ml) cL+ (g/ml) 

cH- + cLH- + cL- cH+ + cLH+ + cL+ 
1 

(100%) 
0 0 0 3.38918E-2 3.30000E-2 3.2108E-2 
cH- + cLH- + cL- = 0 cH+ + cLH+ + cL+ = 0.099 g/ml 

2 
(99%) 

3.38918E-4 3.30000E-4 3.2108E-4 3.36372E-2 3.25059E-2 3.18668E-2 
cH- + cLH- + cL- = 0.00099 g/ml cH+ + cLH+ + cL+ = 0.09801 g/ml 

3 
(50%) 

1.69549E-2 1.65000E-2 1.60541E-2 1.96959E-2 1.11448E-2 1.86593E-2 
cH- + cLH- + cL- = 0.0495 g/ml cH+ + cLH+ + cL+ = 0.0495 g/ml 

4 
(0%) 

3.38918E-2 3.30000E-2 3.2108E-2 0 0 0 
cH- + cLH- + cL- = 0.099 g/ml cH+ + cLH+ + cL+ = 0 

Table 16. Concentrations of cH, cLH and cL at t = 0 for each treatment group, i. The solute species 
that participate in the mass-action association/dissociation reaction described by Equation 71 
are denoted as H+, LH+ and L+ to distinguish them from their respective single-species-
component counterparts, H-, LH- and L-. By definition, at all times, at point in the system, cH = cH- 
+ cH+, cLH = cLH- + cLH+, cL = cL- + cL+ and cH = cLH + cL for each treatment group. At t = 0, at each 
point in the system, cH = 3.38918E-2 g/ml, cLH = 3.30000E-2 g/ml, cL = 3.2108E-2 g/ml, cH = 
0.099 g/ml, cH/MH = 2(cLH/MLH) = cL/ML and c1<k<14 = c14<k<27 = 4.16667E-5 g/ml for each 
treatment group. For each treatment group, at t = 0, it also holds that cH-/MH = 2(cLH-/MLH) = 
cL-/ML and cH+/MH = cL+/ML throughout the system.  
 
Details regarding the treatment groups, the Noise-Free Signals and the times chosen for analysis 
 
For each system, 71.23% (by volume) D2O, 0.15 M NaCl and 20 mM NH4HCO3 define the 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

96 

 

imaginary aqueous buffer, for which, at T = 20.00°C, the pH is neutral, the density is ρ0 = 1.08225 
g/ml and the viscosity is η = 1.0196 cP. Despite its multiple components, the buffer is defined as 
the implicit solvent, and as such, it is treated as if it were just one component. It is therefore 
assumed that each system can be adequately modelled without the need to keep track of each 
buffer component (the H2O, D2O, NaCl and NH4HCO3) individually, as would be required if each 
buffer component were treated explicitly.  
 
Every explicit solute species of every system is imagined as a spherical, 30 nm diameter PS bead, 
or a dimer of two such beads, and each explicit solute species can be defined by its extent of 
deuteration (Figure 8) or its consequent density (Table 15). Each system includes the implicit 
solvent plus as many as 30 explicit solute species. Of those 30 explicit solute species, 27 are 
single-species components that include L-, H-, and LH- (Table 16), plus each of the 24 PS-bead 
species present at low concentration (1 < k < 14 or 14 < k < 27, Table 15). The 3 remaining 
explicit solute species, L+, H+ and LH+, arise from 2 two-species components, L+ and H+, that 
share 1 product, LH+, in common (Table 16).  
 
Each treatment group (Table 16) is a mixture of the two previously described systems (Figures 
12 and 16) that differ with respect to KA (Equations 71 and 72). In a given treatment group, % KA 
> 0 denotes the mass-percent of the mixture drawn from the system in which H, LH and L consist 
entirely of the reactive species, H+, LH+ and L+ (Equation 71; Table 16; Figure 12). Likewise, in a 
given treatment group, the mass-percent of the mixture drawn from the system in which H, LH 
and L consist entirely of the nonreactive species, H-, LH- and L- (Equation 72; Table 16; Figure 
16), is denoted as % KA undefined, which is equal to 100% - (% KA > 0).  
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At 0% KA > 0, the explicit solute species consist entirely of the 27 single-species components that 
include L-, H-, and LH- (Equation 72; Table 16; Figure 16). At 100% KA > 0, the explicit solute 
species consist entirely of the 3 explicit solute species (L+, H+ and LH+) that arise from the 2 two-
species components (L+ and H+) that share 1 product (LH+) in common (Equation 71; Table 16; 
Figure 12), plus the 24 single-species components present at low concentration (1 < k < 14 or 14 
< k < 27, Table 15). Between 0% KA > 0 and 100% KA > 0, all 30 explicit solute species are 
present.  
 
As the model renders the solution density sensitive to the concentration of each explicit solute 
species (Equations 62 to 70), the implicit solvent is treated as displaceable by the explicit solutes. 
With the implicit solvent being treated as a single component, however, it is assumed that the 
composition of any implicit solvent displaced is identical to the composition of the buffer in the 
reference solution. The implicit solvent is also treated as the implicit reference system of each 
AUC simulation. In the simulated AUC, all components other than PS beads are treated as being at 
equal chemical potential in a given solute-containing system and its implicit reference system, so 
that only the PS beads contribute to the Noise-Free Signal.  
 
The set of all treatment groups number g = 4 in total. The treatment groups are indexed by i, and 
their composition in terms of % KA > 0 is shown in Table 17. Table 17 also lists ni, which is the 
number of replicates, h, per treatment group, i. In addition, Table 17 gives the times, tϵ, at which 
AUC data from each replicate of each treatment group were analysed. The within-group results of 
the analysis were used in pair-wise comparisons between treatment groups. 
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treatment group ni tϵ analysed 
(reference: t1) % KA > 0 i 

100 1 9 t36 t51 t66 
99 2 9 t36 t51 t66 
50 3 3 t36 t51 t66 

0 4 3 t36 t51 t66 
Table 17. Treatment groups, number of replicates and times chosen for analysis. Each treatment 
group is a mixture for which the % KA > 0 is the mass-percent drawn from the system for which 
H, LH and L consist entirely of H+, LH+ and L+ (Equation 71; Table 16). The number of replicates, 
h, per treatment group, i, is ni. At each of the times chosen, AUC data from each replicate of each 
treatment group were analysed, and the within-group results of the analysis were used in pair-
wise comparisons between treatment groups.  
 
By Equation 3, for treatment group i at radial position rj and time tϵ, the total concentration of all 
solute species is hAcCd, Def = D hjkjlm , where n is the total number of solute species. At t0, for each 
treatment group, i, ci(rj,t0,) = 0.1 g/ml at each radial position, rj. (See An overview of the method 
of data analysis.) For consistency of indexing among similar species across treatment groups, 
when counting species, cH-, cH+, cLH-, cLH+, cL- and cL+ are regarded as subspecies. As in the legend 
of Table 16, cH = cH- + cH+, cLH = cLH- + cLH+ and cL = cL- + cL+, where, following the system 
presented in Table 15, cH = c1, cLH = c14 and cL = c27. Thus, as in Table 15, n = 27 for all i, even 
though there are really 30 species among the 24 single-species components and the 6 subspecies 
of each treatment group within 1 < i < 4. For i = 1, there really are 27 species among 24 single-
species components plus a pair of components that comprises 3 subspecies. For i = 4 as well, 
there really are 27 species, each of which is a single-species component. 
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An overview of the times chosen for analysis describes the basic guidelines for choosing the 
times at which data are analysed. With the further constraint that the same time points be chosen 
for each treatment group, the earliest, the most central and the latest time points that fall within 
those guidelines were chosen for analysis to try to maximise the likelihood of detecting any time-
dependent system behaviour. (In general, the ideal time points that meet such criteria would be 
expected to vary with treatment group, but for the treatment groups in Table 17, these time 
points are very similar.) The earliest time point, t36, occurs shortly after the last of the solute 
boundaries has cleared its radial extremum of origin. The latest time point, t66, occurs shortly 
before the first of the solute boundaries has begun to merge with its radial extremum of 
accumulation. The central time point, t51, occurs at or near the maximum extent of overlap 
between the centripetally and centrifugally directed boundaries (Moody, 2012a; 2012b).  
 
Figures 12 to 15 show NFSi(rj,tϵ) versus rj for each treatment group at each time, tϵ, chosen for 
analysis (Table 17). As previously noted, the optical path-length was assigned a value of L = 0.3 
cm for each treatment group, and each PS-bead species was assigned a specific fringe 
displacement of kλ = 2,500 fringe/[cm∙g/ml]. Thus, by Equation 4, with ci(rj,tϵ) denoting the total 
PS-bead concentration of treatment group i at radial position rj and time tϵ, and with L denoting 
the optical path-length, NFSi(rj,tϵ) = kλ[ci(rj,tϵ)]L is the noise-free portion of the signal that would 
be obtained using the RI detection system. (See An overview of the method of data analysis.) 
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Figure 12. ci(rj,tϵ) and NFSi(rj,tϵ) versus rj for i = 1 (100% KA > 0, 0% KA undefined) at t1 (⎯⎯⎯), 
t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯). For all i, at all rj, NFSi(rj,t0) = ci(rj,t0)Lkλ = 75 fringe, where 
ci(rj,t0) = 0.1 g/ml, L = 0.3 cm and kλ = 2,500 fringe/[cm∙g/ml]. Treatment group i = 1 is one of 
the two previously described model systems that were contrived to exhibit dramatic Johnston-
Ogston effects in AUC simulations (Moody, 2012a), selected data from which were subjected to 
analysis in a subsequent paper (Moody, 2012b). 
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Figure 13. ci(rj,tϵ) and NFSi(rj,tϵ) versus rj for i = 2 (99% KA > 0, 1% KA undefined) at t1 (⎯⎯⎯), t36 
(⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯). For all i, at all rj, NFSi(rj,t0) = ci(rj,t0)Lkλ = 75 fringe, where ci(rj,t0) 
= 0.1 g/ml, L = 0.3 cm and kλ = 2,500 fringe/[cm∙g/ml]. 
 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

102 

 

 
Figure 14. ci(rj,tϵ) and NFSi(rj,tϵ) versus rj for i = 3 (50% KA > 0, 50% KA undefined) at t1 (⎯⎯⎯), 
t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯). For all i, at all rj, NFSi(rj,t0) = ci(rj,t0)Lkλ = 75 fringe, where 
ci(rj,t0) = 0.1 g/ml, L = 0.3 cm and kλ = 2,500 fringe/[cm∙g/ml]. 
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Figure 15. ci(rj,tϵ) and NFSi(rj,tϵ) versus rj for i = 4 (0% KA > 0, 100% KA undefined) at t1 (⎯⎯⎯), 
t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯). For all i, at all rj, NFSi(rj,t0) = ci(rj,t0)Lkλ = 75 fringe, where 
ci(rj,t0) = 0.1 g/ml, L = 0.3 cm and kλ = 2,500 fringe/[cm∙g/ml]. Treatment group i = 4 is one of 
the two previously described model systems that were contrived to exhibit dramatic Johnston-
Ogston effects in AUC simulations (Moody, 2012a), selected data from which were subjected to 
analysis in a subsequent paper (Moody, 2012b). 
 
For treatment group i at radial position rj and time tϵ, the concentrations of all solute species 
other than cH, cLH and cL is 
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phAcCd, DefqKLM = i hj
m�

jlt + i hj
tN

jlm� , 
(73) 
where, as in the legend of Table 16, cH = cH- + cH+, cLH = cLH- + cLH+ and cL = cL- + cL+. Figures 16 
to 19 show [ci(rj,tϵ)]low versus r for each treatment group at each time chosen for analysis (Table 
17). At t0, for each treatment group, i, [ci(rj,t0)]low = 0.001 g/ml at each radial position, rj. 
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Figure 16. [ci(rj,tϵ)]low versus rj for i = 1 (100% KA > 0, 0% KA undefined) at t1 (⎯⎯⎯), t36 (⎯⎯⎯), t51 
(⎯⎯⎯) and t66 (⎯⎯⎯). As [ci(rj,tϵ)]low (Equation 73) is included within ci(rj,tϵ), the data in this figure 
contribute to the NMSi(rj,tϵ) data shown in Figure 12, albeit almost imperceptibly, due to ci(rj,tϵ) 
being dominated by the cH, cLH and cL (Tables 15 and 16). This treatment group is one of the two 
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previously described model systems that were contrived to exhibit dramatic Johnston-Ogston 
effects in AUC simulations (Moody, 2012a), selected data from which were subjected to analysis 
in a subsequent paper (Moody, 2012b). 
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Figure 17. [ci(rj,tϵ)]low versus rj for i = 2 (99% KA > 0, 1% KA undefined) at t1 (⎯⎯⎯), t36 (⎯⎯⎯), t51 
(⎯⎯⎯) and t66 (⎯⎯⎯). As [ci(rj,tϵ)]low (Equation 73) is included within ci(rj,tϵ), the data in this figure 
contribute to the NMSi(rj,tϵ) data shown in Figure 13, albeit almost imperceptibly, due to ci(rj,tϵ) 
being dominated by the cH, cLH and cL (Tables 15 and 16). 
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Figure 18. [ci(rj,tϵ)]low versus rj for i = 3 (50% KA > 0, 50% KA undefined) at t1 (⎯⎯⎯), t36 (⎯⎯⎯), t51 
(⎯⎯⎯) and t66 (⎯⎯⎯). As [ci(rj,tϵ)]low (Equation 73) is included within ci(rj,tϵ), the data in this figure 
contribute to the NMSi(rj,tϵ) data shown in Figure 14, albeit almost imperceptibly, due to ci(rj,tϵ) 
being dominated by the cH, cLH and cL (Tables 15 and 16). 
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Figure 19. [ci(rj,tϵ)]low versus rj for i = 4 (0% KA > 0, 100% KA undefined) at t1 (⎯⎯⎯), t36 (⎯⎯⎯), t51 
(⎯⎯⎯) and t66 (⎯⎯⎯). As [ci(rj,tϵ)]low (Equation 73) is included within ci(rj,tϵ), the data in this figure 
contribute to the NMSi(rj,tϵ) data shown in Figure 15, albeit almost imperceptibly, due to ci(rj,tϵ) 
being dominated by the cH, cLH and cL (Tables 15 and 16). This treatment group is one of the two 
previously described model systems that were contrived to exhibit dramatic Johnston-Ogston 
effects in AUC simulations (Moody, 2012a), selected data from which were subjected to analysis 
in a subsequent paper (Moody, 2012b).  
 
That cLH = cLH- + cLH+ for i = 3 (50% KA > 0, 50% KA undefined; Figures 14 and 18) is nearer to 
cLH = cLH- + cLH+ for i = 4 (0% KA > 0, 100% KA undefined; Figures 15 and 19) than it is to cLH = 
cLH- + cLH+ for i = 1 (100% KA > 0, 0% KA undefined; Figures 12 and 16) is shown by the much 
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stronger resemblance Figure 18 (50% KA > 0) bears to Figure 19 (0% KA > 0) than to Figure 16 
(100% KA > 0). Evidence of the same is less obviously shown by the stronger resemblance Figure 
14 (50% KA > 0) bears to Figure 15 (0% KA > 0) than to Figure 12 (100% KA > 0).  
 
NMS AND DATA TRANSFORMATIONNMS AND DATA TRANSFORMATIONNMS AND DATA TRANSFORMATIONNMS AND DATA TRANSFORMATION    
 
Transformations from rj and tϵ to MNO∗ , from Yi(rj,tϵ) to Yi(MNO∗ ) and from Yi,h(rj,tϵ) to Yi,h(MNO∗ ) 
 
To provide the greatest possible comparability, for each treatment groups at each time chosen for 
analysis, the same ranges of MNO∗  values were, to the closest extent possible, applied to determine 
the expectation value, MA,e∗ , and the observation, MA,B,e∗ , for each replicate (Equation 13). By 
Equation 5, MNO∗ = m³´�O uv ¦êOê;¨, where the first N values of the index, φϵ, are given by φϵ = j for r0 = 
rb > rj, and the second N values of the index, φϵ, are given by φϵ = j + N for r0 = rm < rj (Equation 
6). As MNO∗  values depend on both rj and tϵ (Equation 5), and as the rj values are both discrete 
(Equation 32) and invariant with tϵ, it is not possible to set a range of MNO∗  to specific values that 
apply to more than one specific times. Rather, both the values and the full range (Table 18) of all 
MNO∗  values vary with time, while the number of MNO∗  values within a limited range (Table 19) also 
varies with time. 
 

j rj 
(cm) 

φϵ MNO∗  (Svedberg); ϵ gives tϵ in minutes 
MN@P∗  MNQ¸∗  MNPP∗  

1 6.00073 1 -21.3665 -15.0822 -11.6545 
900 7.19939 900 -0.00100 -0.00070 -0.00054 
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1 6.00073 901 0.00143 0.00101 0.00078 
900 7.19939 1,800 21.3709 15.0853 11.6568 

Table 18. The full range, at each time, tϵ, of all MNO∗  values, and, within each such range, the nearest 
approaches of MNO∗  to 0 from below and above. The MNO∗  values are calculated as shown by Equation 
5, where, at each time, tϵ, each of the N = 900 radial positions, rj, is applied once to the outermost 
extremum, r0 = rb = 7.12000 cm, and once to the innermost extremum, r0 = rm = 6.00000 cm. 
The 2N values of the index φϵ are calculated from N and the index j, as shown by Equation 6. (The 
first N values of φϵ are equal to j for r0 = rb, and the second N values of φϵ are equal to φϵ = j + N 
for r0 = rm.) 
 

j rj 
(cm) 

φϵ MNO∗  (Svedberg); ϵ gives tϵ in minutes 
MN@P∗  MNQ¸∗  MNPP∗  

      68 6.09820 68 -19.4771 -13.7486 ----10.623910.623910.623910.6239    
234 6.33321 234 -1.50426 ----10.618310.618310.618310.6183    -8.20504 
413 6.57723 413 ----10.609010.609010.609010.6090    -7.48873 -5.78675 
474 6.65835 474 -9.17163 -6.47409 ----5.002715.002715.002715.00271    
565 6.77755 565 -7.09074 ----5.005235.005235.005235.00523    -3.86768 
659 6.89852 659 ----5.016095.016095.016095.01609    -3.54077 -2.73605 

      183 6.26195 1083 5.011175.011175.011175.01117    3.5373 2.73337 
264 6.37476 1164 7.10508 5.015355.015355.015355.01535    3.8755 
347 6.48833 1247 9.17583 6.47706 5.005005.005005.005005.00500    
406 6.56786 1306 10.604610.604610.604610.6046    7.48558 5.78431 
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599 6.82155 1499 1.5049 10.622810.622810.622810.6228    8.20854 
806 7.08356 1706 1.94688 1.37427 10.619310.619310.619310.6193    

    all points within limits 471 668 867 
Table 19. Selected MNO∗  values that, at each time, tϵ, lie within the limits applied to the calculation 
of MA,e∗  and MA,B,e∗  (Equation 13). For each time tϵ, the 4 MNO∗  values shown in bold type are those that 
most closely approach those limits, and as such, are those values of MNO∗  that lie just over M�Ak¾x∗  = 
-10.625E-13 s, just under M�¿À¾x∗  = -5E-13 s, just over M�AkÁx∗  = 5E-13 s or just under M�¿ÀÁx∗  = 
10.625E-13 s. Of the 10 MNO∗  values shown for each time tϵ, the 8 that lie between either M�Ak¾x∗  and 
M�¿À¾x∗  or M�AkÁx∗  and M�¿ÀÁx∗  are highlighted in yellow. For each time, tϵ, the number of all points 
that lie within the limits are highlighted in blue. 
 
By Equation 7, Yi,h(rj,tϵ) = NMSi,h(rj,tϵ) - NMSi,h(rj,tα), where tα = t1. The set of all such differences 
for replicate h of treatment group i is transformed by remapping Yi,h(rj,tϵ) versus rj to Yi,h(MNO∗ ) 
versus MNO∗ , where MNO∗  is calculated from rj and tϵ using Equation 5. The NFSi(rj,tϵ) of treatment 
group i is designated as NMSi(rj,tϵ) (Equation 1c), to which the application of Equation 7 yields, 
absent the subscript h, Yi(rj,tϵ) = NMSi(rj,tϵ) - NMSi(rj,tα), where, again, tα = t1. The set of all such 
differences for treatment group i is transformed by remapping Yi(rj,tϵ) versus rj to Yi(MNO∗ ) versus 
MNO∗ , where, again, MNO∗  is calculated from rj and tϵ using Equation 5. 
 
Figures 20 to 23 show Yi(MNO∗ ) versus MNO∗  and Yi,h(MNO∗ ) versus MNO∗  for treatment groups i = 1 to i = 
4 at t36, t51 and t66. (For convenience, tϵ is denoted by the time in minutes. To calculate MNO∗  
(Equation 5) in dimensions of seconds, however, tϵ (Table 17) must be expressed in seconds.) 
These figures appear pair-wise, with the first of each pair showing the Yi(MNO∗ ) values obtained 
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from the noise-free data, and the second first of each pair showing the Yi,h(MNO∗ ) values obtained 
from the noise-modified data.  
 
At each time, tϵ, a mask was applied to select the ranges (Table 19) of data used to calculate the 
expectation value, MA,e∗ , and each replicate observation, MA,B,e∗  (Equation 13), of each treatment 
group, i. The dimensionless values of each mask are set equal to 1 at all MNO∗  within 5E-13 s < �MNO∗ � 
< 10.625E-13 s, and are set equal to 0 everywhere else. Such a mask is shown throughout Figures 
20 to 23. 
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Figure 20a. Noise-free Yi(MNO∗ ) versus MNO∗  for i = 1 (100% KA > 0, 0% KA undefined) at t36 (⎯⎯⎯), 
t51 (⎯⎯⎯) and t66 (⎯⎯⎯). For the mask shown (⎯⎯⎯), the dimensionless values are set equal to 1 at 
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all MNO∗  within 5E-13 s < �MNO∗ � < 10.625E-13 s, and are set equal to 0 everywhere else (Figure 32). 
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Figure 20b. Yi,h(MNO∗ ) versus MNO∗  for i = 1 (100% KA > 0, 0% KA undefined) and 1 ≤ h ≤ 9 at t36 
(∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙). For the mask shown (⎯⎯⎯), the dimensionless values are set equal to 
1 at all MNO∗  within 5E-13 s < �MNO∗ � < 10.625E-13 s, and are set equal to 0 everywhere else (Figure 
32). 
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Figure 21a. Noise-free Yi(MNO∗ ) versus MNO∗  for i = 2 (99% KA > 0, 1% KA undefined) at t36 (⎯⎯⎯), t51 
(⎯⎯⎯) and t66 (⎯⎯⎯). For the mask shown (⎯⎯⎯), the dimensionless values are set equal to 1 at all 
MNO∗  within 5E-13 s < �MNO∗ � < 10.625E-13 s, and are set equal to 0 everywhere else (Figure 32). 
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Figure 21b. Yi,h(MNO∗ ) versus MNO∗  for i = 2 (99% KA > 0, 1% KA undefined) and 1 ≤ h ≤ 9 at t36 
(∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙). For the mask shown (⎯⎯⎯), the dimensionless values are set equal to 
1 at all MNO∗  within 5E-13 s < �MNO∗ � < 10.625E-13 s, and are set equal to 0 everywhere else (Figure 
32). 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

115 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

20

30

40

50

60

70

80
400

500

 
Y
i(s

* ϕ
ε 

) 
(f

ri
n

g
e

)

s*
ϕ

ε 

 (Svedberg)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
m

a
s

k

 
Figure 22a. Noise-free Yi(MNO∗ ) versus MNO∗  for i = 3 (50% KA > 0, 50% KA undefined) at t36 (⎯⎯⎯), 
t51 (⎯⎯⎯) and t66 (⎯⎯⎯). For the mask shown (⎯⎯⎯), the dimensionless values are set equal to 1 at 
all MNO∗  within 5E-13 s < �MNO∗ � < 10.625E-13 s, and are set equal to 0 everywhere else (Figure 32). 
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Figure 22b. Yi,h(MNO∗ ) versus MNO∗  for i = 3 (50% KA > 0, 50% KA undefined) and 1 ≤ h ≤ 3 at t36 
(∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙). For the mask shown (⎯⎯⎯), the dimensionless values are set equal to 
1 at all MNO∗  within 5E-13 s < �MNO∗ � < 10.625E-13 s, and are set equal to 0 everywhere else (Figure 
32). 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

117 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

30

40

50

60

70

80
400

500

 
Y
i(s

* ϕ
ε 

) 
(f

ri
n

g
e

)

s*
ϕ

ε 

 (Svedberg)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
m

a
s

k

 
Figure 23a. Noise-free Yi(MNO∗ ) versus MNO∗  for i = 4 (0% KA > 0, 100% KA undefined) at t36 (⎯⎯⎯), 
t51 (⎯⎯⎯) and t66 (⎯⎯⎯). For the mask shown (⎯⎯⎯), the dimensionless values are set equal to 1 at 
all MNO∗  within 5E-13 s < �MNO∗ � < 10.625E-13 s, and are set equal to 0 everywhere else (Figure 32). 
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Figure 23b. Yi,h(MNO∗ ) versus MNO∗  for i = 4 (0% KA > 0, 100% KA undefined) and 1 ≤ h ≤ 3 at t36 
(∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙). For the mask shown (⎯⎯⎯), the dimensionless values are set equal to 
1 at all MNO∗  within 5E-13 s < �MNO∗ � < 10.625E-13 s, and are set equal to 0 everywhere else (Figure 
32). 
 
DATA ANALYSIS: APPLICATIONDATA ANALYSIS: APPLICATIONDATA ANALYSIS: APPLICATIONDATA ANALYSIS: APPLICATION    
 
The derivative of the signal with respect to MNO∗  (Equation 8): w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  
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Figure 24. For i = 1 (100% KA > 0, 0% KA undefined), w§¡¢c¤¥O∗ f§¤¥O∗ y� at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 
(⎯⎯⎯), along with w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  for each replicate (1 ≤ h ≤ 9) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all 
plotted against MNO∗  restricted to the regions (5E-13 s < �MNO∗ � < 10.625E-13 s) in which the mask 
shown in Figure 20 is equal to 1. 
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Figure 25. For i = 2 (99% KA > 0, 1% KA undefined), w§¡¢c¤¥O∗ f§¤¥O∗ y� at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 
(⎯⎯⎯), along with w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  for each replicate (1 ≤ h ≤ 9) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all 
plotted against MNO∗  restricted to the regions (5E-13 s < �MNO∗ � < 10.625E-13 s) in which the mask 
shown in Figure 21 is equal to 1. 
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Figure 26. For i = 3 (50% KA > 0, 50% KA undefined), w§¡¢c¤¥O∗ f§¤¥O∗ y� at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 
(⎯⎯⎯), along with w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  for each replicate (1 ≤ h ≤ 3) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all 
plotted against MNO∗  restricted to the regions (5E-13 s < �MNO∗ � < 10.625E-13 s) in which the mask 
shown in Figure 22 is equal to 1. 
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Figure 27. For i = 4 (0% KA > 0, 100% KA undefined), w§¡¢c¤¥O∗ f§¤¥O∗ y� at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 
(⎯⎯⎯), along with w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  for each replicate (1 ≤ h ≤ 3) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all 
plotted against MNO∗  restricted to the regions (5E-13 s < �MNO∗ � < 10.625E-13 s) in which the mask 
shown in Figure 23 is equal to 1. 
 
The nonredundant derivative (Equation 9): ©A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − �A,BcMNO∗ f 
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Figure 28. For i = 1 (100% KA > 0, 0% KA undefined), ©AcMNO∗ f at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
along with ©A,BcMNO∗ f for each replicate (1 ≤ h ≤ 9) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all plotted 
against MNO∗  restricted to the regions (5E-13 s < �MNO∗ � < 10.625E-13 s) in which the mask shown in 
Figure 20 is equal to 1. 
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Figure 29. For i = 2 (99% KA > 0, 1% KA undefined), ©AcMNO∗ f at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
along with ©A,BcMNO∗ f for each replicate (1 ≤ h ≤ 9) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all plotted 
against MNO∗  restricted to the regions (5E-13 s < �MNO∗ � < 10.625E-13 s) in which the mask shown in 
Figure 21 is equal to 1. 
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Figure 30. For i = 3 (50% KA > 0, 50% KA undefined), ©AcMNO∗ f at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
along with ©A,BcMNO∗ f for each replicate (1 ≤ h ≤ 3) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all plotted 
against MNO∗  restricted to the regions (5E-13 s < �MNO∗ � < 10.625E-13 s) in which the mask shown in 
Figure 22 is equal to 1. 
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Figure 31. For i = 4 (0% KA > 0, 100% KA undefined), ©AcMNO∗ f at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
along with ©A,BcMNO∗ f for each replicate (1 ≤ h ≤ 3) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all plotted 
against MNO∗  restricted to the regions (5E-13 s < �MNO∗ � < 10.625E-13 s) in which the mask shown in 
Figure 23 is equal to 1. 
 
The time-corrected distribution function (Equation 10): ²A,BcMNO∗ f = ©A,BcMNO∗ fc�t¤¥O∗ ³´�Of 
 
At any given MNO∗  value, the dimensionless factor �t¤¥O∗ ³´�O (Equation 10; Figure 32) increasingly 
diverges from 1 with increasing time, except at MNO∗  = 0 s, where �t¤¥O∗ ³´�O is always equal to 1. 
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Using Equation 5 to substitute for MNO∗ , 
�t¤¥O∗ ³´�O = �tKk¦êOê;¨ = wCdCxyt =

ª«¬
«wCdC�yt  }~C Cd  < Cx

w CdC�yt  }~C Cd  > Cx«̄°
«± 

(74) 
is obtained, where r0 is equal either to its maximum value of rb or its minimum value of rm. Thus, 
at each time, tϵ > 0, as MNO∗  decreases from 0 toward its time-dependent minimum value of 

m³´�O uv ¦ê÷êR¨, �t¤¥O∗ ³´�O decreases from 1 toward its time-independent minimum value of ¦ê÷êR¨t, 
while as MNO∗  increases from 0 toward its time-dependent maximum value of m³´�O uv ¦êRê÷¨, �t¤¥O∗ ³´�O 
increases from 1 toward its time-independent maximum value of ¦êRê÷¨t. 
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Figure 32a. The full range of the dimensionless factor �t¤¥O∗ ³´�O versus MNO∗  at t36 (⎯⎯⎯), t51 (⎯⎯⎯) 
and t66 (⎯⎯⎯); and the full range of the dimensionless mask versus MNO∗  at t36 (––––), t51 (∙–∙–⋅) and 
t66 (∙∙∙∙∙). (Although the Svedberg is used for the dimension of the ordinate, �t¤¥O∗ ³´�O  was 
calculated using MNO∗  in seconds, tϵ in seconds, and ω in inverse seconds.) 
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Figure 32b. The dimensionless factor �t¤¥O∗ ³´�O  versus selected MNO∗  values at t36 (⎯⎯⎯), t51 (⎯⎯⎯) 
and t66 (⎯⎯⎯); and the dimensionless mask versus selected MNO∗  values at t36 (––––), t51 (∙–∙–⋅) and 
t66 (∙∙∙∙∙). The selected MNO∗  values shown are those at which mask values of 1 predominate. 
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Figure 32c. The full range of 1/�t¤¥O∗ ³´�O  versus MNO∗  at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯); and the 
full range of the dimensionless mask versus MNO∗  at t36 (––––), t51 (∙–∙–⋅) and t66 (∙∙∙∙∙). 
 
The signal-to-noise ratio of ²A,BcMNO∗ f worsens in proportion to 1 �t¤¥O∗ ³´�OÂ  as MNO∗  increases 
 
The application of Equation 8 yields w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  as the apparent signal that is subjected to further 
analysis. The application of Equation 9 yields ©A,BcMNO∗ f, which is equal to those values of 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  that do not appear to be redundant. Relative to the signal-to-noise ratio of ©A,BcMNO∗ f, 
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at any given time, tϵ, the signal-to-noise ratio of ²A,BcMNO∗ f increases in proportion to 1 �t¤¥O∗ ³´�OÂ  
(Figure 32c) as MNO∗  decreases from 0, while the signal-to-noise ratio of ²A,BcMNO∗ f decreases in 
proportion to 1 �t¤¥O∗ ³´�OÂ  as MNO∗  increases from 0. Also relative to the signal-to-noise ratio of 
©A,BcMNO∗ f, at any given MNO∗  < 0, the signal-to-noise ratio of ²A,BcMNO∗ f increases in proportion to 
1 �t¤¥O∗ ³´�OÂ  as tϵ increases, while at any given MNO∗  > 0, the signal-to-noise ratio of ²A,BcMNO∗ f 
decreases in proportion to 1 �t¤¥O∗ ³´�OÂ  as tϵ increases. Such effects can be seen by comparing 
each of the figures for ©A,BcMNO∗ f (Figures 28 to 31) with its corresponding figure for ²A,BcMNO∗ f 
(Figures 33 to 36).  
 
With respect to optimising the signal-to-noise ratio, its proportionality to 1 �t¤¥O∗ ³´�OÂ  shows that 
the analysis of centripetally directed boundaries would benefit from utilising the latest possible 
data, while the analysis of centrifugally directed boundaries would benefit from utilising the 
earliest possible data. Where a boundary direction can be changed from centrifugal to centripetal 
through the use of D2O or other substitutions that would make the implicit solvent more dense 
than the solutes, doing so would also be expected to optimise the signal-to-noise ratio, all else 
being equal. Such substitutions were, in fact, imagined to be made for treatment groups 1 to 4. 
 
In the simulated AUC of treatment groups 1 to 4, the 71.23% D2O (volume-percent) of the 
implicit solute ensured that, for any given replicate of a given treatment group, �²A,BcMNO∗ f� would 
reflect approximately equal contributions from centripetally and centrifugally directed 
boundaries would at any given time, as a given mass of a solute of positive buoyancy is always 
counterbalanced by an approximately equal mass of a solute of negative buoyancy, such that the 
net buoyancy of the pair is close to zero. As a result, for the two treatment groups, i = 1 (100% KA 
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> 0) and i = 2 (99% KA > 0), with the strongest signal-to-noise characteristics, the net signal-to-
noise ratio of �²A,BcMNO∗ f� is relatively stable with time, as compared to treatment groups 3 and 4.  
 
Treatment groups 1 and 2 have the strongest signal-to-noise characteristics because their high 
signal-to-noise regions were selected as the negative-MNO∗  and the positive-MNO∗  ranges, 
-10.625E-13 s < MNO∗  < -5E-13 s and 5E-13 s < MNO∗  < 10.625E-13 s, respectively, over which to 
integrate both �²A,BcMNO∗ f� in the calculation of KA,BcMNO∗ f (Equation 11), and MNO∗ �²A,BcMNO∗ f� in the 
calculation of MA,B,e∗  (Equations 12 and 13). In comparison, treatment group 3 has weaker signal-
to-noise characteristics because a relatively larger portion of its low signal-to-noise regions lie 
within the utilised ranges of MNO∗ , 5E-13 s < �MNO∗ � < 10.625E-13 s. Treatment group 4 has the 
weakest signal-to-noise characteristics because its high signal-to-noise regions are concentrated 
in two narrow segments within the utilised ranges of MNO∗ . 
 
Over any given range of MNO∗ , regions with signal-to-noise ratios approaching zero are subject to 
data clipping, which results in roughly half the noise in such regions being counted as signal. The 
more predominant the noise is within the utilised ranges of MNO∗ , the more the noise becomes 
mistaken for signal via data clipping. (See Mitigation of data clipping.) 
 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

133 

 

 
Figure 33. For i = 1 (100% KA > 0, 0% KA undefined), �²AcMNO∗ f� at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 
(⎯⎯⎯), along with �²A,BcMNO∗ f� for each replicate (1 ≤ h ≤ 9) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all 
plotted against MNO∗ . Multiplication of ²AcMNO∗ f and ²A,BcMNO∗ f by the mask (Figure 32) for the 
corresponding time, t36, t51 or t66, left ²AcMNO∗ f and ²A,BcMNO∗ f unchanged wherever 5E-13 s < �MNO∗ � 
< 10.625E-13 s, and set them to zero everywhere else. Figure 39 shows the integral of each of 
these curves with respect to MNO∗ . 
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Figure 34. For i = 2 (99% KA > 0, 1% KA undefined), �²AcMNO∗ f� at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
along with �²A,BcMNO∗ f� for each replicate (1 ≤ h ≤ 9) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all plotted 
against MNO∗ . Multiplication of ²AcMNO∗ f and ²A,BcMNO∗ f by the mask (Figure 32) for the corresponding 
time, t36, t51 or t66, left ²AcMNO∗ f and ²A,BcMNO∗ f unchanged wherever 5E-13 s < �MNO∗ � < 10.625E-13 s, 
and set them to zero everywhere else. Figure 40 shows the integral of each of these curves with 
respect to MNO∗ . 
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Figure 35. For i = 3 (50% KA > 0, 50% KA undefined), �²AcMNO∗ f� at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 
(⎯⎯⎯), along with �²A,BcMNO∗ f� for each replicate (1 ≤ h ≤ 3) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all 
plotted against MNO∗ . Multiplication of ²AcMNO∗ f and ²A,BcMNO∗ f by the mask (Figure 32) for the 
corresponding time, t36, t51 or t66, left ²AcMNO∗ f and ²A,BcMNO∗ f unchanged wherever 5E-13 s < �MNO∗ � 
< 10.625E-13 s, and set them to zero everywhere else. Figure 41 shows the integral of each of 
these curves with respect to MNO∗ . 
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Figure 36. For i = 4 (0% KA > 0, 100% KA undefined), �²AcMNO∗ f� at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 
(⎯⎯⎯), along with �²A,BcMNO∗ f� for each replicate (1 ≤ h ≤ 3) at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), all 
plotted against MNO∗ . Multiplication of ²AcMNO∗ f and ²A,BcMNO∗ f by the mask (Figure 32) for the 
corresponding time, t36, t51 or t66, left ²AcMNO∗ f and ²A,BcMNO∗ f unchanged wherever 5E-13 s < �MNO∗ � 
< 10.625E-13 s, and set them to zero everywhere else. Figure 42 shows the integral of each of 
these curves with respect to MNO∗ . 
 
The cumulative distribution function (Equation 11): KA,BcMNO∗ f = º �²A,BcTNO∗ f�¶TNO∗¤¥O∗¤¥O·¸∗  
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For replicate h of treatment group i at time tϵ, the cumulative distribution function of the 
apparent sedimentation coefficient, KA,BcMNO∗ f, equates to a substantially time-normalised, but not 
entirely time-independent, measure of the total, initial signal from signal of all solutes for which 
the apparent sedimentation coefficient is less than or equal to some specified value of interest, 
but greater than its time-dependent minimum value, of m³´�O uv ¦ê÷êR¨. (See the discussion following 
Equation 74.) As MNOlm∗ = m³´�O uv ¦ȩ̂êR¨ is the nearest value to the time-dependent minimum of MNO∗  
(Equations 5 and 6), MNOlm∗  is the lower limit of the integral (Equation 11) that yields KA,BcMNO∗ f. 
 
It is the dimensionless factor �t¤¥O∗ ³´�O (Equations 10 and 74; Figure 32) that serves to somewhat 
normalise ²A,BcMNO∗ f, and thus also KA,BcMNO∗ f, with respect to time. That KA,BcMNO∗ f is time-
normalised can be seen from the discrepancy between the change in �A,BcMNO∗ f and the change in 
KA,BcMNO∗ f over a given range of MNO∗ . (Compare Figures 20 to 23 with Figures 39 to 42, 
respectively.) 
 
For a system, i = x-, in which there is just one solute, and in which that solute behaves exactly like 
a distribution of nondiffusing solutes for which sx-, the would-be weight-average sedimentation 
coefficient, is less than zero and is invariant with either radial position or time, the factor 
�t¤¥O∗ ³´�O would, in the absence of noise, render KAlÀ-cMNOlt�∗ f exactly equal to �AlÀ-cMN;∗ f, the 
signal produced by the solute at time t0, thus compensating for the radial concentration effect 
having caused the signal across the centripetally directed boundary to increase by 
�AlÀ-cMN;∗ f U��t¤ù-³´�O −  ��t¤ù-³´�;V from time t0 to time tϵ, assuming that, at tϵ, the boundary 
would have remained distinct from the radial extremum at which the solute accumulates. 
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For a system, i = x+, in which there is just one solute, and in which that solute behaves exactly 
like a distribution of nondiffusing solutes for which sx+, the would-be weight-average 
sedimentation coefficient, is greater than zero and is invariant with either radial position or time, 
the factor �t¤¥O∗ ³´�O would, in the absence of noise, render KAlÀ�cMNOlt�∗ f exactly equal to 
�AlÀ�cMN;∗ f, the signal produced by the solute at time t0, thus compensating for the radial dilution 
effect having caused the signal across the centrifugally directed boundary to decrease by 
�AlÀ�cMN;∗ fp��t¤ù»³´�O −  ��t¤ù»³´�;q from time t0 to time tϵ, assuming that, at tϵ, the boundary 
would have remained distinct from the radial extremum at which the solute accumulates. 
 
Treatment groups 1 to 4 are realistic enough systems with realistic enough solutes that the factor 
�t¤¥O∗ ³´�O only approximately compensates for the radial concentration or radial concentration 
effects. Nevertheless, predictable trends are seen in the data for these treatment groups. Due to 
the proportionality of ²A,BcMNO∗ f to �t¤¥O∗ ³´�O, KA,BcMNOl�∗ f − KA,BcMNOl¿∗ f tends to be significantly 
less than �A,BcMNOl¿∗ f − �A,BcMNOl�∗ f across a centripetally directed boundary spanning MNOl¿∗  to 
MNOl�∗ , where MNOl¿∗  < MNOl�∗  < 0. Contrariwise, but again due to the proportionality of ²A,BcMNO∗ f to 
�t¤¥O∗ ³´�O KA,BcMNOlW∗ f − KA,BcMNOlA∗ f tends to be significantly greater than �A,BcMNOlW∗ f − �A,BcMNOlA∗ f 
across a centrifugally directed boundary spanning MNOlA∗  to MNOlW∗ , where 0 < MNOlA∗  < MNOlW∗ . Such 
trends in �A,BcMNO∗ f, ²A,BcMNO∗ f, and KA,BcMNO∗ f are also seen in seen in �AcMNO∗ f, ²AcMNO∗ f, and KAcMNO∗ f. 
 
Figure 39 shows KAcMNO∗ f versus MNO∗  and KA,BcMNO∗ f versus MNO∗  for i = 1 (100% KA > 0, 0% KA 
undefined), and Figure 42 shows KAcMNO∗ f versus MNO∗  and KA,BcMNO∗ f versus MNO∗  for i = 4 (0% KA > 0, 
100% KA undefined). Data at 5-minute intervals for the high-concentration species, L, H and LH, 
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that dominate those results are presented in the initial paper that described the AUC simulation 
of treatment group i = 1 (Moody, 2012a: Figures 3 to 5, KA = 30.325 ml/g) and treatment group i 
= 4 (Moody, 2012a: Figures 10 to 12, KA undefined). Additional figures presented here show cL, 
cH and cLH versus rj at t36, t51 and t66 only (Figures 37 and 38), and for i = 1, also show the 
component concentrations of L and H versus ri at t36 and two earlier times (Figure 37). The 
additional figures, and a review of treatment groups 1 through 4, with a focus on treatment 
groups 1 and 2, provide the background needed to consider the KAcMNO∗ f versus MNO∗  and KA,BcMNO∗ f 
versus MNO∗  for results for all four treatment groups (Figures 39 to 42; Table 20). 
 
Treatment groups 1 to 4 reviewed 
 
Treatment groups 1 and 2, the replicates of which consist, respectively, of the 100% KA > 0 and 
99% KA > 0 solutions (Table 16), behave so similarly that, as will be shown (Statistical analysis of 
AUC simulation results for any given time of analysis, tϵ), distinguishing one group from the other 
at a confidence level of 95% requires considerable effort. For i = 1 and i = 2, the oppositely 
directed mass transport of L+ and H+ ensures that, from the radial extrema inward, cLH+ goes to 
zero with time. For i = 2, 1% (by mass) of LH is present as LH-, which is all the LH that persists 
after cLH+ has declined to zero everywhere. A fairly thorough description of treatment group 1 is 
presented in a section (Treatment group 1 reviewed in detail) below. That section includes 
Figure 37, which shows the high-concentration species of treatment group 1 at the times 
analysed (t36, t51 and t66). 
 
Treatment group 3 (Figure 18), the replicates of which consist of the 50% KA > 0 solution, 
resembles the two treatment groups, 1 (100% KA > 0) and 4 (0% KA > 0), of which it is a 1-to-1 
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(mass-to-mass) mixture, but behaves more like the latter (Figure 19) than the former (Figure 
16), as from the start (t0), for i = 3 (Table 16), the mass-action equilibrium (Equation 71) is 
poised such that the concentration of dissociable dimer (cLH+ = 1.11448E-2 g/ml at t0) is 
significantly less than the concentration of non-dissociable dimer (cLH- = 1.65000E-2 g/ml at t0). 
As with treatment group 1, for i = 3, the oppositely directed mass transport of L+ and H+ ensures 
that, from the radial extrema inward, cLH+ goes to zero with time. The 50% (by mass) of LH 
present as LH-, is percentage of LH that persists after cLH+ has declined to zero everywhere. 
Figure 43 shows the high-concentration species of this group at the times analysed (t36, t51 and 
t66). 
 
Treatment group 4, the replicates of which consist of the 0% KA > 0 solution (Table 16), has no 
dissociable dimer present anywhere at any time. Instead, for i = 4, all particles of LH are in the 
form of LH-, which persist permanently and redistribute subtly. A fairly thorough description of 
this group is presented in a section (Treatment group 4 reviewed in detail) below. That section 
includes Figure 38, which shows the high-concentration species of this group at the times 
analysed (t36, t51 and t66). 
 
Treatment group 1 reviewed in detail 
 
As previously stated (Details regarding the treatment groups, the Noise-Free Signals and the 
times chosen for analysis), the explicit solute species of treatment group 1 consist of 24 single-
species components present at low concentration (1 < k < 14 or 14 < k < 27, Table 15), plus 3 
species, L+, H+ and LH+, that are present at high concentration. The high-concentration species 
arise from 2 two-species components, L+ and H+, that share 1 product, LH+, in common (Table 
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16). Equation 71 describes the mass-action association/dissociation reaction in which L+ and H+ 
are defined as the reactants and LH+ is defined as the product. For that reaction at 20.00°C, KA = 
30.325 ml/g, kf+ = 30,000 [ml/g]/s and kr+ = kf+/KA ≅ 989.277 s. There being no L-, H- or LH- 
present in treatment group 1, L+ is simply referred to as L, H+ is simply referred to as H and LH+ 
is simply referred to as LH. Every explicit solute species other than LH is modelled as a spherical, 
30 nm diameter PS bead, and LH is modelled as a dimer of L and H. The particles are modelled as 
varying in the extent of deuteration (Figure 8) and consequent density (Table 15). 
 
The high-concentration species, L, H and LH, are responsible for the major effects observed in the 
replicates of treatment group 1. Furthermore, the effects of low-concentration species 2 to 13 on 
species L and LH are similar to the effects of species H on species L and LH, while the effects of 
low-concentration species 15 to 26 on species H and LH are similar to the effects of species L on 
species H and LH. The net effects of the low-concentration species are thus small enough to 
permit the system to be described as if only species L, H and LH were present. This fact is 
exploited here to describe treatment group 1 as simply as possible. Figure 37a, which shows, 
among other things, cL, cH and cLH versus rj at times t36, t51 and t66, illustrates the behaviour of 
species L, H and LH described below. Figure 37c shows the nearest equivalent to Figure 37a for 
the case of each yk,q, each hk,q, each pk,q, each (σp)k,q and each ck of [ci(rj,tϵ)]low set to zero. Other 
figures cited refer to a previous work (Moody, 2012a). 
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Figure 37a. Treatment group i = 1 (100% KA > 0) at t36 = 2160 s (36 min), t51 = 3060 s (51 min) 
and t66 = 3960 s (min), which are the times analysed. Shown are the species concentrations of L, 
H and LH, cL (dashed lines), cH (dotted lines) and cLH (small, open circles), respectively, versus rj 
at times t36 (green), t51 (black) and t66 (red). Also shown are component concentration of L, cL,LH 
= cL + cLHML/MLH (Equation 75), at t36 (dashed blue line); and the component concentration of H, 
cH,LH = cH + cLHMH/MLH (Equation 76), at t36 (dotted blue line). In the region of the dip in cL along 
the boundary of H, the component concentration of L (cL,LH) takes the form of the leading edge of 
a peak produced by a negatively buoyant solute undergoing a density-gradient-driven Johnston-
Ogston effect (Moody, 2012a: Figure 7, Ka = 30.325 ml/g), but migrates centrifugally (Figure 
37b) as a consequence of its form owing its existence to the centrifugally migrating boundary of 
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H. In the region of the dip in cH along the boundary of L, the component concentration of H (cH,LH) 
takes the form of the leading edge of a peak produced by a positively buoyant solute undergoing 
a density-gradient-driven Johnston-Ogston effect (Moody, 2012a: Figure 6, Ka = 30.325 ml/g), 
but migrates centripetally (Figure 37b) as a consequence of its form owing its existence to the 
centripetally migrating boundary of L. 
 

 
Figure 37b. Treatment group i = 1 (100% KA > 0) at t16 = 960 s (16 min), t26 = 1560 s (26 min) 
and t36 = 2160 s (36 min). Shown are the component concentration of L, cL,LH = cL + cLHML/MLH 
(Equation 75), at t16 (dashed cyan line), t26 (dashed violet line) and t36 (dashed orange line); and 
the component concentration of H, cH,LH = cH + cLHMH/MLH (Equation 76), at t16 (dotted cyan 
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line), t26 (dotted violet line) and t36 (dotted orange line). Also shown are the species 
concentrations of L, H and LH, which are cL (dashed lines), cH (dotted lines) and cLH (small, open 
circles), respectively, versus rj at times t16 (green), t26 (black) and t36 (red). At any given time, 
cL,LH resembles the truncated peak of a negatively buoyant solute undergoing a density-gradient-
driven Johnston-Ogston effect (Moody, 2012a: Figure 7, Ka = 30.325 ml/g), but unlike such a 
peak, the apparent peak in cL,LH narrows with time as its leading edge co-migrates with the 
centrifugally directed boundary of H and its trailing edge co-migrates with the centripetally 
directed boundary of L. At any given time, cH,LH resembles the truncated peak of a positively 
buoyant solute undergoing a density-gradient-driven Johnston-Ogston effect (Moody, 2012a: 
Figure 6, Ka = 30.325 ml/g), but unlike such a peak, the apparent peak in cH,LH narrows with time 
as its leading edge co-migrates with the centripetally directed boundary of L and its trailing edge 
co-migrates with the centrifugally directed boundary of H. 
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Figure 37c. The nearest equivalent to Figure 37a for the case of each yk,q, each hk,q, each pk,q, each 
(σp)k,q and each ck of [ci(rj,tϵ)]low set to zero. Shown are the species concentrations of L, H and LH, 
cL (dashed lines), cH (dotted lines) and cLH (small, open circles), respectively, versus rj at times t21 
(green), t41 (black) and t61 (red), where t21 = 1260 s (21 min), t41 = 2460 s (41 min) and t61 = 
3660 s (61 min). Also shown are the component concentration of L, cL,LH = cL + cLHML/MLH 
(Equation 75), at t21 (dashed blue line); and the component concentration of H, cH,LH = cH + 
cLHMH/MLH (Equation 76), at t21 (dotted blue line). At all times, Mj = Mjx (Table 15; Equation 70) 
and Ïj = Ïjx (Equation 61) for each species, k, where k = 1 for H, k = 14 for LH and k = 27 for L. 
For the reaction in which L and H are defined as the reactants and LH is defined as the product 
(Equation 71), KA = 30.325 ml/g, kf+ = 30,000 [ml/g]/s and kr+ = kf+/KA ≅ 989.277 s. 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

146 

 

Component concentrations cL,LH and cH,LH in this case can be described by the same text applied to 
their counterparts in Figure 37a. 
 

 
Figure 37d. The nearest equivalent to Figure 37b for the case of each yk,q, each hk,q, each pk,q, each 
(σp)k,q and each ck of [ci(rj,tϵ)]low set to zero. Shown are the component concentration of L, cL,LH = 
cL + cLHML/MLH (Equation 75), at t16 (dashed cyan line), t21 (dashed violet line) and t26 (dashed 
orange line); and the component concentration of H, cH,LH = cH + cLHMH/MLH (Equation 76), at t16 
(dotted cyan line), t21 (dotted violet line) and t26 (dotted orange line), where t16 = 960 s, t21 = 
1260 s and t26 = 1560 s. Also shown are the species concentrations of L, H and LH, which are cL 
(dashed lines), cH (dotted lines) and cLH (small, open circles), respectively, versus rj at times t16 
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(green), t21 (black) and t26 (red). The time-dependent behaviour of cL,LH and cH,LH in this case can 
be described by the same text applied to their counterparts in Figure 37b. 
 
In a system of treatment group 1(100% KA > 0), at a time from t0 to a few minutes after t36, there 
is always a plateau region (where ¦§A§ê¨� ≅ 0) around the radial centre of the system. This plateau 
region narrows with time as the centripetally directed boundary of L (Moody, 2012a: Figure 4, KA 
= 30.325 ml/g) migrates into it from above and the centrifugally directed boundary of H (Moody, 
2012a: Figure 3, KA = 30.325 ml/g) migrates into it from below. Within this narrowing plateau 
region, cLH slowly decreases with time (Moody, 2012a: Figure 5, KA = 30.325 ml/g), while cL 
increases with time due to the radial concentration effect and cH decreases with time due to the 
radial dilution effect. 
 
In a system of treatment group 1(100% KA > 0), at a time from t0 to a few minutes after t36, from 
rb inward along the radial axis, following a region where cL = 0, cL increases broadly and almost 
linearly with decreasing r across the boundary of L to the plateau region where ¦§AX§ê ¨� ≅ 0, and cL 
then dips across the region occupied by the boundary of H, beyond which cL rebounds to a level 
somewhat shy of its plateau concentration, at which level it remains until the innermost zone of 
accumulation, where cL approaches its maximum possible value, [h�]�¿À (Equation 63). 
 
In a system of treatment group 1(100% KA > 0), at a time from t0 to a few minutes after t36, from 
rm outward along the radial axis, following a region where cH = 0, cH increases broadly and 
almost linearly with increasing r across the boundary of H to the plateau region where ¦§AY§ê ¨� ≅ 
0, and cH then dips across the region occupied by the boundary of L, beyond which cH rebounds to 
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a level somewhat exceeding its plateau concentration, at which level it remains until the 
outermost zone of accumulation, where cH approaches its maximum possible value, [h<]�¿À 
(Equation 63). The outermost zone of accumulation is occupied by the pellet. 
 
In a system of treatment group 1(100% KA > 0), at a time from t0 to a few minutes after t36, the 
mass-transport boundaries of L and H are also reaction boundaries along which cLH is directly 
proportional to cL within the boundary of L or cH within the boundary of H. Denoting the 
component concentration of L by cL,LH, 

h�,�< = h� + h�< ?�?�< 
(75) 
where ML = Mk=27 and MLH = Mk=14 are the molar masses (Equation 50; Table 15) of L and LH, 
respectively. Denoting the component concentration of H by cH,LH, 

h<,�< = h< + h�< ?<?�< 
(76) 
where MH = Mk=1 and MLH = Mk=14 are the molar masses (Equation 50; Table 15) of H and LH, 
respectively. 
 
In the region of the dip in cL along the boundary of H, the component concentration of L, cL,LH 
(Equation 75; Figure 37a), takes the form of the leading edge of a peak produced by a negatively 
buoyant solute undergoing a density-gradient-driven Johnston-Ogston effect (Moody, 2012a: 
Figure 7, Ka = 30.325 ml/g), but migrates centrifugally (Figure 37b) as a consequence of its form 
owing its existence to the centrifugally migrating boundary of H. In the region of the dip in cH 
along the boundary of L, the component concentration of H, cH,LH (Equation 76; Figure 37a), takes 
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the form of the leading edge of a peak produced by a positively buoyant solute undergoing a 
density-gradient-driven Johnston-Ogston effect (Moody, 2012a: Figure 6, Ka = 30.325 ml/g), but 
migrates centripetally (Figure 37b) as a consequence of its form owing its existence to the 
centripetally migrating boundary of L. As the effect is seen even with each yk,q (Equation 59), 
each hk,q (60), each pk,q (Equation 64), each (σp)k,q (Equation 65) and each ck of [ci(rj,tϵ)]low (1 < k 
< 14 and 14 < k < 27 of Equation 73) set to zero (Figures 37c and 37d), it can be entirely 
attributed to the solutes predominant solutes, L, H and LH, being sedimentationally polydisperse 
participants in a mass-action association/dissociation reaction (Equation 71). 
 
In a system of treatment group 1(100% KA > 0), at a few minutes after t36, the centripetally 
directed boundary of the floating solute L (Moody, 2012a: Figure 4, KA = 30.325 ml/g) and the 
centrifugally directed boundary of the sedimenting solute H (Moody, 2012a: Figure 3, KA = 
30.325 ml/g) meet near the radial centre of the system, and are maximally superimposed at 
about t51. By a few minutes before t71, the centripetally directed boundary of L and the 
centrifugally directed boundary of H have largely passed through each other, leaving, from the 
approximate radial centre of the system outwards, a continuously broadening region where cH 
and cL both approach zero. For treatment group 1, wherever either cH or cL is zero, cLH is zero, and 
the oppositely directed mass transport of L and H thus ensures that, from the radial extrema 
inward, cLH goes to zero with time. 
 
Treatment group 4 reviewed in detail 
 
As previously stated (Details regarding the treatment groups, the Noise-Free Signals and the 
times chosen for analysis), the explicit solute species of treatment group 4 consist of 27 single-
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species components, of which 24 are present at low concentration (1 < k < 14 or 14 < k < 27, 
Table 15), and 3, L-, H- and LH-, are present at high concentration (Table 16). There being no L+, 
H+ or LH+ present in treatment group 1, L- is simply referred to as L, H- is simply referred to as H 
and LH- is simply referred to as LH. Every explicit solute species other than LH is modelled as a 
spherical, 30 nm diameter PS bead, and LH is modelled as a dimer of L and H. The particles are 
modelled as varying in the extent of deuteration (Figure 8) and consequent density (Table 15). 
 
The high-concentration species, L, H and LH, are responsible for the major effects observed in the 
replicates of treatment group 4. Furthermore, the effects of low-concentration species 2 to 13 on 
species L and LH are similar to the effects of species H on species L and LH, while the effects of 
low-concentration species 15 to 26 on species H and LH are similar to the effects of species L on 
species H and LH. The net effects of the low-concentration species are thus small enough to 
permit the system to be described as if only species L, H and LH were present. This fact is 
exploited here to describe treatment group 4 as simply as possible. Figure 38, which shows cL, cH 
and cLH versus rj at times t36, t51 and t66, illustrates the behaviour of species L, H and LH described 
below. Other figures cited refer to a previous work (Moody, 2012a). 
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Figure 38. Treatment group i = 4 (0% KA > 0). Shown are the species concentrations of L, H and 
LH, which are cL (dashed lines), cH (dotted lines) and cLH (small, open circles), respectively, 
versus rj at times t36 (green), t51 (black) and t66 (red). 
 
Changes in cLH (Moody, 2012a: Figure 12, KA undefined) are entirely driven by changes in the 
concentrations of the system’s other solute species, particularly cH (Moody, 2012a: Figure 10, KA 
undefined) and cL (Moody, 2012a: Figure 11, KA undefined). As cH increases, sLH becomes more 
negative, where sLH = sk=14 (Equation 70). As cL increases, sLH becomes more positive. Thus, 
where cH accumulates in the pellet (the outermost zone of accumulation) or cL accumulates in the 
supernatant (the innermost zone of accumulation), cLH decreases. 
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Changes in cLH have subtle effects on the mass flow of the other solute species. With respect to 
solute species H and L, as cLH decreases, ÆsHÆ and ÆsLÆ increase, where sH = sk=1 and sL = sk=27 
(Equation 70). Thus, the small decrease in cH toward the pellet of species H (Moody, 2012a: 
Figure 10, KA undefined), and the small decrease in cL toward the supernatant of species L 
(Moody, 2012a: Figure 11, KA undefined), are driven by the large decreases in cLH toward the 
pellet and supernatant, respectively (Moody, 2012a: Figure 12, KA undefined). 
 
As L (Moody, 2012a: Figure 11, KA undefined) migrates away from the pellet region, it leaves 
behind part of the plateau of H (Moody, 2012a: Figure 10, KA undefined). The presence of H and 
the loss of L raise the local density of the solution, which confers a negative sedimentation 
coefficient on any LH present (Moody, 2012a: Figure 12, KA undefined). Thus, the large decrease 
in cLH toward the pellet is a centripetally directed boundary of LH. Between the centripetally 
directed boundary of LH and the centripetally directed boundary of L is a broadening plateau 
region in which cLH is increased by a Johnston-Ogston effect of L on LH. This Johnston-Ogston-
affected plateau region broadens with time because the centripetally directed boundary of L 
migrates much faster than the centripetally directed boundary of LH. The concentration of this 
Johnston-Ogston-affected plateau region increases with time due to the underlying effect of 
radial concentration on the centripetally migrating LH. 
 
As H (Moody, 2012a: Figure 10, KA undefined) migrates away from the supernatant region, it 
leaves behind part of the plateau of L (Moody, 2012a: Figure 11, KA undefined). The presence of L 
and the loss of H lower the local density of the solution, which confers a positive sedimentation 
coefficient on any LH present (Moody, 2012a: Figure 12, KA undefined). Thus, the large decrease 
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in cLH toward the supernatant is a centrifugally directed boundary of LH. Between the 
centrifugally directed boundary of LH and the centrifugally directed boundary of H is a 
broadening plateau region in which cLH is increased by a Johnston-Ogston effect of H on LH. This 
Johnston-Ogston-affected plateau region broadens with time because the centrifugally directed 
boundary of H migrates much faster than the centrifugally directed boundary of LH. The 
concentration of this Johnston-Ogston-affected plateau region decreases with time due to the 
underlying effect of radial dilution on the centrifugally migrating LH. 
 
Before the centripetally directed boundary of L (Moody, 2012a: Figure 11, KA undefined) and the 
centrifugally directed boundary of H (Moody, 2012a: Figure 10, KA undefined) become 
superimposed, cLH (Moody, 2012a: Figure 12, KA undefined) barely changes from its initial 
concentration in the space remaining between its broadening Johnston-Ogston-affected plateau 
regions, as in that space, the balance between cL and cH changes slowly enough to keep LH close 
to neutral buoyancy. (The radial concentration effect increases cL with time, and the radial 
dilution effect decreases cH with time, causing sLH = sk=14 (Equation 70) between the Johnston-
Ogston-affected plateau regions at t36 to approach 0.2 Svedberg, which is negligibly low.) 
 
After the centripetally directed boundary of L (Moody, 2012a: Figure 11, KA undefined) and the 
centrifugally directed boundary of H (Moody, 2012a: Figure 10, KA undefined) have passed 
beyond superimposition and are migrating away from each other, the space between them is 
overlapped by the two Johnston-Ogston-affected plateau regions of cLH (Moody, 2012a: Figure 12, 
KA undefined). The overlap in the two Johnston-Ogston-affected plateau regions of cLH broadens 
as the space between the centripetally directed boundary of L and the centrifugally directed 
boundary of H broadens. As both cL and cH are nearly zero where the Johnston-Ogston-affected 
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plateau regions of cLH overlap, LH is extremely close to neutral buoyancy there, so that cLH 
remains nearly constant with time there, at least until the time scale extends to days and weeks 
(Moody, 2012a: Figure 16, KA undefined). 
 
A consideration of the results for KAcMNO∗ f and KA,BcMNO∗ f 
 
Multiplication of the sedimentation coefficient distribution functions (Equation 10), ²AcMNO∗ f and 
²A,BcMNO∗ f, by the mask (Figure 32) for the corresponding time, t36, t51 or t66, left ²AcMNO∗ f and 
²A,BcMNO∗ f unchanged wherever 5E-13 s < �MNO∗ � < 10.625E-13 s, and set them to zero everywhere 
else (Figures 33 to 36). In effect, then, Figures 39 to 42 show the cumulative distribution function 
(Equation 11) of the apparent sedimentation coefficient within the limits (Table 19) applied to 
the calculation of MA,e∗  and MA,B,e∗  (Equation 13), in that  

KA,BcMNOlt�∗ f = µ �²A,BcMNO∗ f�¶MNO∗
¤¥O·´Z∗

¤¥O·¸∗  
≡ µ �²A,BcMNO∗ f�¶MNO∗

¤÷øù[;∗

¤÷¢ú[;∗  
+ µ �²A,BcMNO∗ f�¶MNO∗

¤÷øù\;∗

¤÷¢ú\;∗
= KA,B(M�¿ÀÁx∗ ) − KA,B(M�AkÁx∗ ) + KA,B(M�¿À¾x∗ ) − KA,B(M�Ak¾x∗ ), 

(77) 
where M�Ak¾x∗  = -10.625E-13 s, M�¿À¾x∗  = -5E-13 s, M�AkÁx∗  = 5E-13 s and M�¿ÀÁx∗  = 10.625E-13 s. 
Dropping the subscript h in Equation 77 yields the corresponding equation for the expectation 
value, KAcMNOlt�∗ f. 
 
The equivalence of KA,BcMNOlt�∗ f to KA,B(M�¿ÀÁx∗ ) – KA,B(M�AkÁx∗ ) + KA,B(M�¿À¾x∗ ) – KA,B(M�Ak¾x∗ ) is not 
general, and thus Equation 77 is not general, as it only applies if all ²A,BcMNO∗ < M�Ak¾x∗ f = 0, all 
²A,BcM�¿À¾x∗ < MNO∗ < M�AkÁx∗ f = 0 and all ²A,BcMNO∗ > M�¿ÀÁx∗ f = 0, as is the case here after the 
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application of the masks (Figure 32) for t36, t51 and t66. 
 
Within treatment group i, the mean of all KA,BcMNO∗ f is given by 

ÄKAcMNO∗ fÅ = 1vA i KA,BcMNO∗ fk¢
Blm , 

(78)  
where ni is the number of replicates for treatment group i. For treatment group i, the difference 
between the within-group mean, ÄKAcMNO∗ fÅ, and the expectation value, KAcMNO∗ f, is denoted as 

�'¢cMNO∗ f = ÄKAcMNO∗ fÅ − KAcMNO∗ f, 
(79)  
and is a measure of the accumulated error in ÄKAcMNO∗ fÅ.  
 
Tables 20 to 23 show, for i = 1 to 4, respectively, KAcMNO∗ f, KA,BcMNO∗ f, ÄKAcMNO∗ fÅ, and �'¢cMNO∗ f at MNO∗  
= 2N at each time, tϵ, analysed. The KAcMNOlt�∗ f values of Tables 20 to 23 are equal to KAcMNO∗ f at 
MNO∗  ≥ M�¿ÀÁx∗  in Figures 39 to 42, respectively, and the KA,BcMNOlt�∗ f values of Tables 20 to 23 are 
equal to KA,BcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figures 39 to 42, respectively. 
 

i = 1 tϵ = t36 = 2160 s tϵ = t51 = 3060 s tϵ = t66 = 3960 s KAcMNOlt�∗ f 101.49655 fringe 26.34547 fringe 48.93778 fringe h KA,BcMN@Plt�∗ f (fringe) KA,BcMNQ¸lt�∗ f (fringe) KA,BcMNPPlt�∗ f (fringe) 1 101.91105 26.76412 50.45937 2 101.91331 26.80589 50.39927 3 101.94551 26.84282 50.53779 4 101.92266 26.92670 50.42958 5 101.95705 26.87394 50.57732 
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6 101.93849 26.84627 50.44268 7 101.90956 26.73099 50.44577 8 101.78902 26.78315 50.41757 9 101.95661 26.92200 50.38844 ÄKAcMNOlt�∗ fÅ 101.91592 fringe 26.83288 fringe 50.45531 fringe �'¢cMNOlt�∗ f 0.41937 fringe 0.48740 fringe 1.51753 fringe Table 20. KAcMNO∗ f, KA,BcMNO∗ f, ÄKAcMNO∗ fÅ, and �'¢cMNO∗ f for i = 1 at MNOlt�∗  at the times analysed: tϵ = 
t36, tϵ = t51 and tϵ = t66. The expectation values (Equation 77), KAcMNOlt�∗ f, are highlighted in blue. 
The replicate values (Equation 77), KA,BcMNOlt�∗ f, are not highlighted. The within-group mean 
values (Equation 78), ÄKAcMNOlt�∗ fÅ, are highlighted in yellow. The accumulated error values 
(Equation 79), �'¢cMNOlt�∗ f, each being the difference between the mean and the expectation 
value, are highlighted in red. The KAcMNOlt�∗ f values of this table are equal to KAcMNO∗ f at MNO∗  ≥ 
M�¿ÀÁx∗  in Figure 39, and the KA,BcMNOlt�∗ f values of this table are equal to KA,BcMNO∗ f at MNO∗  ≥ 
M�¿ÀÁx∗  in Figure 39. 
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Figure 39. For i = 1 (100% KA > 0, 0% KA undefined), KAcMNO∗ f at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), 
along with KA,BcMNO∗ f for each replicate (1 ≤ h ≤ 9) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), all plotted 
against MNO∗ . These curves were obtained by integrating (Equation 77) those shown in Figure 33 
with respect to MNO∗ . The KAcMNOlt�∗ f values of Table 20 are equal to KAcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in this 
figure, and the KA,BcMNOlt�∗ f values of Table 20 are equal to KA,BcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in this figure. 
Note: In Figures 20 to 31 and Figures 33 to 36, the results from noise-free data were shown as 
solid lines, while the results from noise-modified data were shown as dotted lines. Here, in 
Figures 39 to 42, as well as in Figures 44 to 47, that pattern is reversed to maximise 
distinguishability. 
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i = 2 tϵ = t36 = 2160 s tϵ = t51 = 3060 s tϵ = t66 = 3960 s KAcMNOlt�∗ f 101.30369 fringe 25.87534 fringe 49.33616 fringe h KA,BcMN@Plt�∗ f (fringe) KA,BcMNQ¸lt�∗ f (fringe) KA,BcMNPPlt�∗ f (fringe) 1 101.79919 26.30583 50.87075 2 101.81909 26.37697 50.63553 3 101.73783 26.26706 50.89893 4 101.85379 26.30790 50.97201 5 101.74203 26.33117 50.77086 6 101.82609 26.39495 50.77068 7 101.80078 26.37696 50.97742 8 101.67093 26.32227 50.93179 9 101.81939 26.35256 50.78000 ÄKAcMNOlt�∗ fÅ 101.78546 fringe 26.33730 fringe 50.84533 fringe �'¢cMNOlt�∗ f 0.48177 fringe 0.46196 fringe 1.50917 fringe Table 21. KAcMNO∗ f, KA,BcMNO∗ f, ÄKAcMNO∗ fÅ, and �'¢cMNO∗ f for i = 2 at MNOlt�∗  at the times analysed: tϵ = 

t36, tϵ = t51 and tϵ = t66. The expectation values (Equation 77), KAcMNOlt�∗ f, are highlighted in blue. 
The replicate values (Equation 77), KA,BcMNOlt�∗ f, are not highlighted. The within-group mean 
values (Equation 78), ÄKAcMNOlt�∗ fÅ, are highlighted in yellow. The accumulated error values 
(Equation 79), �'¢cMNOlt�∗ f, each being the difference between the mean and the expectation 
value, are highlighted in red. The KAcMNOlt�∗ f values of this table are equal to KAcMNO∗ f at MNO∗  ≥ 
M�¿ÀÁx∗  in Figure 40, and the KA,BcMNOlt�∗ f values of this table are equal to KA,BcMNO∗ f at MNO∗  ≥ 
M�¿ÀÁx∗  in Figure 40. 
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Figure 40. For i = 2 (99% KA > 0, 1% KA undefined), KAcMNO∗ f at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), 
along with KA,BcMNO∗ f for each replicate (1 ≤ h ≤ 9) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), all plotted 
against MNO∗ . (At Figure 39, see note regarding line markings.) These curves were obtained by 
integrating (Equation 77) those shown in Figure 34 with respect to MNO∗ . The KAcMNOlt�∗ f values of 
Table 21 are equal to KAcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in this figure, and the KA,BcMNOlt�∗ f values of Table 
21 are equal to KA,BcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in this figure. 
 
 

i = 3 tϵ = t36 = 2160 s tϵ = t51 = 3060 s tϵ = t66 = 3960 s 
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KAcMNOlt�∗ f 67.96545 fringe 20.42996 fringe 51.12734 fringe h KA,BcMN@Plt�∗ f (fringe) KA,BcMNQ¸lt�∗ f (fringe) KA,BcMNPPlt�∗ f (fringe) 1 69.01049 22.03582 53.57553 2 69.03946 21.84881 53.23323 3 68.82548 22.26766 53.66466 ÄKAcMNOlt�∗ fÅ 68.95847 fringe 22.05076 fringe 53.49114 fringe �'¢cMNOlt�∗ f 0.99303 fringe 1.62080 fringe 2.36380 fringe Table 22. KAcMNO∗ f, KA,BcMNO∗ f, ÄKAcMNO∗ fÅ, and �'¢cMNO∗ f for i = 3 at MNOlt�∗  at the times analysed: tϵ = 
t36, tϵ = t51 and tϵ = t66. The expectation values (Equation 77), KAcMNOlt�∗ f, are highlighted in blue. 
The replicate values (Equation 77), KA,BcMNOlt�∗ f, are not highlighted. The within-group mean 
values (Equation 78), ÄKAcMNOlt�∗ fÅ, are highlighted in yellow. The accumulated error values 
(Equation 79), �'¢cMNOlt�∗ f, each being the difference between the mean and the expectation 
value, are highlighted in red. The KAcMNOlt�∗ f values of this table are equal to KAcMNO∗ f at MNO∗  ≥ 
M�¿ÀÁx∗  in Figure 41, and the KA,BcMNOlt�∗ f values of this table are equal to KA,BcMNO∗ f at MNO∗  ≥ 
M�¿ÀÁx∗  in Figure 41. 
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Figure 41. For i = 3 (50% KA > 0, 50% KA undefined), KAcMNO∗ f at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), 
along with KA,BcMNO∗ f for each replicate (1 ≤ h ≤ 3) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), all plotted 
against MNO∗ . (At Figure 39, see note regarding line markings.) These curves were obtained by 
integrating (Equation 77) those shown in Figure 35 with respect to MNO∗ . The KAcMNOlt�∗ f values of 
Table 22 are equal to KAcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in this figure, and the KA,BcMNOlt�∗ f values of Table 
22 are equal to KA,BcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in this figure. 
 

i = 4 tϵ = t36 = 2160 s tϵ = t51 = 3060 s tϵ = t66 = 3960 s KAcMNOlt�∗ f 44.29047 fringe 15.63733 fringe 44.59381 fringe h KA,BcMN@Plt�∗ f (fringe) KA,BcMNQ¸lt�∗ f (fringe) KA,BcMNPPlt�∗ f (fringe) 
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1 46.13008 18.18701 48.42823 2 46.16479 18.32052 48.28043 3 46.27128 18.67235 48.31607 ÄKAcMNOlt�∗ fÅ 46.18872 fringe 18.39329 fringe 48.34158 fringe �'¢cMNOlt�∗ f 1.89825 fringe 2.75596 fringe 3.74777 fringe Table 23. KAcMNO∗ f, KA,BcMNO∗ f, ÄKAcMNO∗ fÅ, and �'¢cMNO∗ f for i = 4 at MNOlt�∗  at the times analysed: tϵ = 
t36, tϵ = t51 and tϵ = t66. The expectation values (Equation 77), KAcMNOlt�∗ f, are highlighted in blue. 
The replicate values (Equation 77), KA,BcMNOlt�∗ f, are not highlighted. The within-group mean 
values (Equation 78), ÄKAcMNOlt�∗ fÅ, are highlighted in yellow. The accumulated error values 
(Equation 79), �'¢cMNOlt�∗ f, each being the difference between the mean and the expectation 
value, are highlighted in red. The KAcMNOlt�∗ f values of this table are equal to KAcMNO∗ f at MNO∗  ≥ 
M�¿ÀÁx∗  in Figure 42, and the KA,BcMNOlt�∗ f values of this table are equal to KA,BcMNO∗ f at MNO∗  ≥ 
M�¿ÀÁx∗  in Figure 42. 
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Figure 42. For i = 4 (0% KA > 0, 100% KA undefined), KAcMNO∗ f at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 (∙∙∙∙∙), 
along with KA,BcMNO∗ f for each replicate (1 ≤ h ≤ 3) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), all plotted 
against MNO∗ . (At Figure 39, see note regarding line markings.) These curves were obtained by 
integrating (Equation 77) those shown in Figure 36 with respect to MNO∗ . The KAcMNOlt�∗ f values of 
Table 23 are equal to KAcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in this figure, and the KA,BcMNOlt�∗ f values of Table 
23 are equal to KA,BcMNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in this figure. 
 
The accumulated error in KA,BcMNOlt�∗ f increases in proportion to the clipping of random noise 
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A survey of Tables 20 to 23 reveals that the within-group mean (Equation 78), ÄKAcMNOlt�∗ fÅ, is 
always greater than the expectation value (Equation 77), KAcMNOlt�∗ f. Thus, the accumulated 
error (Equation 79), �'¢cMNOlt�∗ f, is always greater than zero. For any given time, tϵ, treatment 
groups 1 and 2 exhibit similar values of �'¢cMNOlt�∗ f, as would be expected, given the small 
differences between those two treatment groups.  
 
For any given time, tϵ, treatment groups 1 and 2 also exhibit the smallest values of �'¢cMNOlt�∗ f, 
which is not surprising, given that the ranges of MNO∗  over which ²A,BcMNO∗ f and ²AcMNO∗ f are 
integrated were chosen (Figure 32b) to maximise the signal-to-noise ratio of ²A,BcMNO∗ f within 
treatment groups 1 and 2, and thereby optimise the confidence with which those two extremely 
similar treatment groups could be distinguished. The cost of such optimisation for treatment 
groups 1 and 2 is relatively poor signal-to-noise characteristics for treatment groups 3 and 4. The 
greater the regions of low signal-to-noise within the ranges of MNO∗  used to calculate ²A,BcMNO∗ f, the 
greater the accumulated net noise in KA,BcMNO∗ f. As i increases from 2 to 4, so does the prevalence 
of low signal-to-noise regions within the ranges of MNO∗  used to calculate ²A,BcMNO∗ f and ²AcMNO∗ f any 
given time, tϵ. Thus, for any given time, tϵ, �'¢cMNOlt�∗ f increases as i increases from 2 to 4. 
 
Treatment groups 3 and 4 include broad swathes of MNO∗  values over which the derivative of the 
noise-free signal, �AcMNO∗ f, with respect to MNO∗  at time tϵ is zero, and the more the limits of analysis 
(M�Ak¾x∗  = -10.625E-13 s, M�¿À¾x∗  = -5E-13 s, M�AkÁx∗  = 5E-13 s and M�¿ÀÁx∗  = 10.625E-13 s of 
Table 19 and Equation 77) include such MNO∗  values, the more �'¢cMNOlt�∗ f is increased. The effect 
stems from data clipping in going from w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  to ©A,BcMNO∗ f. (See Analysis of data for which 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

165 

 

the noise-free signal is always zero everywhere and Mitigation of data clipping.) 
 
Over a range of MNO∗  values throughout which w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  (Equation 8) is either above zero or 
below zero exclusively, and throughout which MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  < 0 holds, the elimination function 
(Equation 9b), �A,BcMNO∗ f, would evaluate to w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  at each value of MNO∗ , and thus, by Equation 
9a, ©A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − �A,BcMNO∗ f would evaluate to zero at each value of MNO∗ , with the result 
that neither the signal, w§¡¢c¤¥O∗ f§¤¥O∗ y�, nor the noise, w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − w§¡¢c¤¥O∗ f§¤¥O∗ y� , would propagate to 
²A,BcMNO∗ f = ©A,BcMNO∗ f�t¤¥O∗ ³´�O  (Equation 10) at any value of MNO∗ . Instead, with ©A,BcMNO∗ f = 0 
everywhere throughout a range of MNO∗  values in which MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  < 0, ²A,BcMNO∗ f = 0 would be 
obtained everywhere, in which case, the signal and the net noise accumulated by KA,BcMNO∗ f upon 
integration (Equations 11 and 77) of �²A,BcMNO∗ f� would be zero. 
 
Over a range of MNO∗  values throughout which w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  (Equation 8) is either above zero or 
below zero exclusively, and throughout which MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  > 0 holds, the elimination function 
(Equation 9b), �A,BcMNO∗ f, would evaluate to zero at each value of MNO∗ , and thus, by Equation 9a, 
©A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − �A,BcMNO∗ f would evaluate to w§¡¢,£c¤¥O∗ f§¤¥O∗ y� at each value of MNO∗ , with the 
result that both the signal, w§¡¢c¤¥O∗ f§¤¥O∗ y�, and the noise, w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − w§¡¢c¤¥O∗ f§¤¥O∗ y�, would propagate to 
²A,BcMNO∗ f = ©A,BcMNO∗ f�t¤¥O∗ ³´�O  (Equation 10) at each value of MNO∗ . The noise in w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  would 
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include points where w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − w§¡¢c¤¥O∗ f§¤¥O∗ y� > 0 and points where w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − w§¡¢c¤¥O∗ f§¤¥O∗ y� < 0 
such that the sum of all such differences would approach zero as the number of points within the 
range of MNO∗  approached infinity. Thus, with ©A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y� everywhere throughout a 
range of MNO∗  values in which MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0, ²A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y� �t¤¥O∗ ³´�O  would be 
obtained everywhere, in which case, the signal and the net noise accumulated by KA,BcMNO∗ f upon 
integration (Equations 11 and 77) of �²A,BcMNO∗ f� would be minimal, as for �²A,BcMNO∗ f − ²AcMNO∗ f� of 
any given magnitude, ²A,BcMNO∗ f − ²AcMNO∗ f > 0 would be as likely an outcome as ²A,BcMNO∗ f −
²AcMNO∗ f < 0, where ²AcMNO∗ f = ©AcMNO∗ f�t¤¥O∗ ³´�O , ©AcMNO∗ f = w§¡¢c¤¥O∗ f§¤¥O∗ y� − �AcMNO∗ f, w§¡¢c¤¥O∗ f§¤¥O∗ y� is the 
noise-free signal, and, given MNO∗ w§¡¢c¤¥O∗ f§¤¥O∗ y� > 0, �AcMNO∗ f = 0.  
 
Where the data largely consist of broad ranges of MNO∗  values throughout which w§¡¢,£c¤¥O∗ f§¤¥O∗ y� is 
either above zero or below zero exclusively, no data clipping occurs, regardless of whether 
MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� < 0 or MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  > 0. Over a range of MNO∗  values throughout which 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  (Equation 8) is either above zero or below zero exclusively, all of the data are 
replaced with zeroes if MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� < 0 holds throughout, and all of the data are retained if 
MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0 holds throughout. In contrast, in data clipping, which is a phenomenon 
restricted to ranges of MNO∗  within which w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  is noise that varies randomly between 
positive and negative values, a random set of approximately half the data yield MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 
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0 and are accordingly retained, while the rest of the data yield MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� < 0 and are 
accordingly replaced with zeroes. 
 
In general, MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0 holds for all w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  data that are retained, and all data that are 
retained are described as belonging to the data-retention category, while MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  < 0 
holds for all w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  data that are replaced with zeroes, and all data that are replaced with 
zeroes are described as belonging to the data-replacement (with zeroes) category. A value of 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  in the data-retention category yields, by Equation 9a, ©A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y�, which, 
by Equation 10, propagates to ²A,BcMNO∗ f = ©A,BcMNO∗ f�t¤¥O∗ ³´�O as w§¡¢,£c¤¥O∗ f§¤¥O∗ y� �t¤¥O∗ ³´�O , and thence, 
by Equation 11 or 77, contributes to the noise accumulated by KA,BcMNO∗ f upon integration of 
�²A,BcMNO∗ f�. A value of w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  in the data-replacement category yields ©A,BcMNO∗ f = 0, which 
renders ²A,BcMNO∗ f equal to zero, and thence contributes nothing to KA,BcMNO∗ f upon integration of 
�²A,BcMNO∗ f�, provided that, as it is often found, ²A,BcMNO�m∗ f and ²A,BcMNO�m∗ f are also equal to zero. 
 
Over a range of MNO∗  values throughout which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, w§¡¢,£c¤¥O∗ f§¤¥O∗ y�will consist solely of 
noise that will be greater than zero at a randomly distributed set of approximately half of the MNO∗  
values, and will be less than zero at the rest of the MNO∗  values, assuming, as is likely, that 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  would only equal zero very rarely. Within a range of MNO∗  values throughout which 
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w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  values will fall into either the data-retention category or the data-
replacement (with zeroes) category. 
 
Where MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0, w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  falls into the data-retention category. Within a range of 
MNO∗  values throughout which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, at a randomly distributed set of approximately half 
of the MNO∗  values, MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0 would hold. Where MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0 held, by Equation 9, 
�A,BcMNO∗ f = 0 would apply to the calculation of ©A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − �A,BcMNO∗ f, from which 
©A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y� would be obtained. By Equation 10, ²A,BcMNO∗ f = ©A,BcMNO∗ f�t¤¥O∗ ³´�O. Thus, 
²A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y� �t¤¥O∗ ³´�O  would be obtained at any value of MNO∗  where ©A,BcMNO∗ f =
w§¡¢,£c¤¥O∗ f§¤¥O∗ y� , and the noise, which is all that w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  constitutes wherever w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, 
would be a source of the net noise accumulated by KA,BcMNO∗ f upon integration (Equations 11 and 
77) of �²A,BcMNO∗ f�. 
 
Where MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� < 0, w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  falls into the data-replacement (with zeroes) category. 
Within a range of MNO∗  values throughout which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, at a randomly distributed set of 
approximately half of the MNO∗  values, MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� < 0 would hold. Where MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� < 0 
held, by Equation 9, �A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  would apply to the calculation of ©A,BcMNO∗ f =



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

169 

 

w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − �A,BcMNO∗ f, from which ©A,BcMNO∗ f = 0 would be obtained. By Equation 10, 
²A,BcMNO∗ f = ©A,BcMNO∗ f�t¤¥O∗ ³´�O . Thus, ²A,BcMNO∗ f = 0 would be obtained at any value of MNO∗  
where ©A,BcMNO∗ f = 0, and the noise, which is all that w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  constitutes wherever 
w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, would not be a source of the net noise accumulated by KA,BcMNO∗ f upon integration 
(Equations 11 and 77) of �²A,BcMNO∗ f�. 
 
Thus, over a range of MNO∗  values throughout which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, the noise, w§¡¢,£c¤¥O∗ f§¤¥O∗ y� , is 
clipped. Approximately half the noise would be in the data-retention category, for which 
MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0. Only the noise in the data-retention category would propagate to ²A,BcMNO∗ f, 
and thence contribute to the noise accumulated by KA,BcMNO∗ f upon integration of �²A,BcMNO∗ f�. The 
rest of the noise, being in the data-replacement category, would render ²A,BcMNO∗ f equal to zero, 
and thence contribute nothing to KA,BcMNO∗ f upon integration of �²A,BcMNO∗ f�. The problem with data 
clipping is not that roughly half the data yield ²A,BcMNO∗ f = 0 over a range of MNO∗  values throughout 
which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0. The problem with data clipping is that roughly half the data yield 
²A,BcMNO∗ f =  w§¡¢,£c¤¥O∗ f§¤¥O∗ y� �t¤¥O∗ ³´�O  over a range of MNO∗  values throughout which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0. If 
instead, all the data yielded ²A,BcMNO∗ f =  0 over any range of MNO∗  values throughout which 
w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, the net contribution of noise to KA,BcMNO∗ f would be minimal. (See Mitigation of 
data clipping.) 
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For treatment groups 1 (Figure 33) and 2 (Figure 34) at most times (tϵ) of analysis (t36, t51, t66) 
and at most values of MNO∗  within the limits of analysis (Table 19; Figure 32b; Equation 77), the 
data largely consist of broad ranges of MNO∗  values throughout which w§¡¢,£c¤¥O∗ f§¤¥O∗ y� is either above 
zero or below zero exclusively. Thus, replicates of treatment groups 1 and 2 exhibit only minor 
effects of data clipping. At times (tϵ) of analysis (t36, t51, t66) and at most values of MNO∗  within the 
limits of analysis (Table 19; Figure 32b; Equation 77), the data for treatment group 3 (Figure 35) 
include significant ranges of MNO∗  in which w§¡¢,£c¤¥O∗ f§¤¥O∗ y� equals or closely approaches zero, while the 
data for treatment group 4 (Figure 36) include even larger ranges of MNO∗  in which w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  
equals or closely approaches zero. Thus, replicates of treatment group 3 exhibit substantial 
effects of data clipping, and replicates of treatment group 4 exhibit the greatest effects of data 
clipping. 
 
KAcMNOlt�∗ f results 
 
A comparison across treatment groups at each time of analysis shows (Tables 20 to 23) that at tϵ 
= t66, KAcMNOlt�∗ f ranges from K�cMNPPlt�∗ f = 44.59381 fringe (Table 23; Figure 42) to 
K�cMNPPlt�∗ f = 51.12134 fringe (Table 22; Figure 41). These results stem largely from the 
difference in the signal across the centripetally and centrifugally directed boundaries (Figures 12 
to 15), to which species L and H, respectively, are the major contributors. 
 
A comparison of treatment group 4 (Figure 38) and treatment group 3 (Figure 43) at tϵ = t66 
shows that the differences across the boundaries of cL and cH are slightly greater for treatment 
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group 3, while between those boundaries, the intervening Johnston-Ogston-affected plateau 
region of cLH is slightly greater for treatment group 4, hence K�cMNPPlt�∗ f > K�cMNPPlt�∗ f. 
 
For each treatment group, cL+H = cL + cH = 0.066 g/ml overall, from which, given L = 0.3 cm and 
kλ = 2,500 fringe/[cm∙g/ml], a signal of cL+HLkλ = 49.5 fringe can be calculated. Adding to this 
clowLkλ = 0.75 fringe, where clow = 0.001 g/ml is the overall concentration of all solute species 
other than cH, cLH and cL in each system (Equation 73), yields a calculated signal of 50.25 fringe 
for all species other than LH. 
 
For cLH = 0 everywhere, as it does for treatment group 1 at tϵ = t66 (Figure 37), and where the 
centripetally and centrifugally directed boundaries are within the effective limits (Table 19; 
Equation 77) that apply to the calculation of KAcMNOlt�∗ f, as they are for treatment group 1 at tϵ = 
t66 (Figure 20), it might be expected that KAcMNOlt�∗ f would equal 50.25 fringe, then. As 
KmcMNPPlt�∗ f = 48.93778 fringe, such is nearly the case for treatment group 1 at tϵ = t66 (Table 20; 
Figure 39). As KtcMNPPlt�∗ f = 49.33616 fringe, such is also nearly the case for treatment group 2 
at tϵ = t66 (Table 21; Figure 40). 
 
As KAcMNO∗ f is insensitive to any radially independent signal, it might be expected that KAcMNOlt�∗ f 
would likewise equal 50.25 fringe for data in which cLH is invariant with rj. The results from 
treatment group 4 are those for which cLH varies the least with rj at any given time, of which tϵ = 
t66 is discussed above. At tϵ = t36, K�cMN@Plt�∗ f = 44.29047 fringe. At tϵ = t66, K�cMNPPlt�∗ f = 
44.59381 fringe. Between the boundaries of cL and cH at tϵ = t36, an intervening Johnston-Ogston-
affected plateau region of cLH reduces the apparent height of those boundaries (Figure 38), so 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

172 

 

that K�cMNPPlt�∗ f = 44.59381 fringe (Table 23; Figure 42). Likewise, centrifugal to the boundary 
of cL and centripetal to the boundary of cH at tϵ = t36, a Johnston-Ogston-affected plateau region of 
cLH reduces the apparent height of those boundaries (Figure 38), so that K�cMN@Plt�∗ f = 44.29047 
fringe (Table 23; Figure 42). 
 
Were it not for the formation of Johnston-Ogston-affected plateau regions arising from the 
redistribution of cLH, K�cMNOlt�∗ f would be much closer to 50.25 fringe at both tϵ = t36 and tϵ = t66. 
At tϵ = t51, however, the differences across the boundaries of cL and cH are obscured due to their 
superimposition at that time, and this effect, coupled with the converging Johnston-Ogston-
affected plateau regions of cLH at tϵ = t51, yields the lowest value of KAcMNOlt�∗ f, K�cMNQ¸lt�∗ f = 
18.18701 fringe (Table 23; Figure 42), of all times analysed for any treatment group (Tables 20 
to 23; Figures 39 to 42). 
 
At tϵ = t51, treatment group 3 (Figure 43) exhibits many of the same characteristics as treatment 
group 4 (Figure 38), but treatment group 3 has just slightly more than half the dimer 
concentration of treatment group 4 by tϵ = t51. As a result, the converging Johnston-Ogston-
affected plateau regions of cLH at tϵ = t51 of treatment group 3 are roughly half the magnitude of 
those in treatment group 4. At tϵ = t51, then, the effects seen in treatment group 3 are less 
extreme than those seen in treatment group 4. Thus, K�cMNQ¸lt�∗ f = 20.42996 fringe (Table 22; 
Figure 41) is the second lowest value of KAcMNOlt�∗ f of all times analysed for any treatment group 
(Tables 20 to 23; Figures 39 to 42). 
 
At tϵ = t36, treatment group 3 (Figure 43) exhibits some of the same characteristics as treatment 
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group 1 (Figure 37), but does so moderately, as the concentration of non-dissociating dimer in 
treatment group 3 is half the initial concentration of the entirely dissociable dimer of treatment 
group 1. Thus, at tϵ = t36, treatment group 3 (Figure 43) also exhibits some of the same 
characteristics as treatment group 4 (Figure 38), but likewise does so moderately. Thus, 
K�cMN@Plt�∗ f = 67. 96545 fringe (Table 22; Figure 41) is a bit closer to K�cMN@Plt�∗ f = 44.29047 
fringe (Table 23; Figure 42) than it is to KmcMN@Plt�∗ f = 101.49655 fringe (Table 20; Figure 39). 

 
Figure 43a. Treatment group i = 3 (50% KA > 0), L, H and LH. Shown are the concentrations of L, 
H and LH, which are cL = cL- + cL+ (dashed lines, centripetally directed boundaries), cH = cH- + 
cH+ (dotted lines, centrifugally directed boundaries) and cLH = cLH- + cLH+ (small, open circles), 
respectively, versus rj at times t36 (green), t51 (black) and t66 (red). Figure 43b shows cL-, cH- and 
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cLH-. Figure 43c shows cL+, cH+ and cLH+. 
 

 
Figure 43b. Treatment group i = 3 (50% KA > 0), L-, H- and LH-. Shown are the species 
concentrations of L-, H- and LH-, which are cL- (dashed lines, centripetally directed boundaries), 
cH- (dotted lines) and cLH- (small, open circles, centrifugally directed boundaries), respectively, 
versus rj at times t36 (green), t51 (black) and t66 (red). Figure 43a shows cL = cL- + cL+, cH = cH- + 
cH+ and cLH = cLH- + cLH+. Figure 43c shows cL+, cH+ and cLH+. 
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Figure 43c. Treatment group i = 3 (50% KA > 0), L+, H+ and LH+. Shown are the species 
concentrations of L+, H+ and LH+, which are cL+ (dashed lines, centripetally directed boundaries), 
cH+ (dotted lines, centrifugally directed boundaries) and cLH+ (small, open circles), respectively, 
versus rj at times t36 (green), t51 (black) and t66 (red). Figure 43a shows cL = cL- + cL+, cH = cH- + 
cH+ and cLH = cLH- + cLH+. Figure 43b shows cL-, cH- and cLH-. 
 
As treatment group 2 (Table 21; Figure 40) overwhelmingly resembles treatment group 1 (Table 
20; Figure 39), the results for each are very similar. The small differences seen must be 
attributable to treatment group 2 having slightly less dissociable dimer than treatment group 1 at 
any given time, and to treatment group 2 having a small amount of the non-dissociating dimer 
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that is completely absent from treatment group 1.  
 
For treatment group 1 at tϵ = t51, the differences across the boundaries of cL and cH are obscured 
due to their superimposition at that time, and this effect reduces the value of KmcMNQ¸lt�∗ f to 
26.34547 fringe (Table 20; Figure 39). That KmcMNQ¸lt�∗ f > K�cMNQ¸lt�∗ f > K�cMNQ¸lt�∗ f can be 
attributed to treatment group 1 being free from converging Johnston-Ogston-affected plateau 
regions of cLH at tϵ = t51. (Compare Tables 20 to 23, and Figures 39 to 42.) 
 
At tϵ = t36, for treatment group 1 (Figure 37), a centripetally directed boundary of LH co-migrates 
with the centripetally directed boundary of L, while a centrifugally directed boundary of LH co-
migrates with the centrifugally directed boundary of H. With respect to the concentrations of 
these species as a function of rj at tϵ = t36 (Figure 37), the radial concentration effect has 
rendered the absolute value of the difference across the centripetally directed boundary of L 
about 11.76% higher than the absolute value of the difference across the centripetally directed 
boundary of LH, and the radial dilution effect has rendered the absolute value of the difference 
across the centrifugally directed boundary of H about 8.95% lower than the absolute value of the 
difference across the centrifugally directed boundary of LH (Figure 37). The absolute value of the 
difference across the centripetally directed boundary of LH is always equal to the absolute value 
of the difference across the centrifugally directed boundary of LH, and at tϵ = t36, the value of 
each is of 0.032619 g/ml. 
 
Given L = 0.3 cm and kλ = 2,500 fringe/[cm∙g/ml], a signal of ckLkλ can be calculated from a 
concentration, ck, of species k expressed in g/ml. With respect to the overall signals of the 
boundaries as a function of rj at tϵ = t36 (Figure 12), the absolute value of the difference across 
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the sum of the centripetally directed boundaries of L and LH is approximately 51.81 fringe, the 
absolute value of the difference across the sum of the centrifugally directed boundaries of H and 
LH is approximately 46.74 fringe, and the grand total of these sums is approximately 98.55 fringe. 
Adding to this clowLkλ = 0.75 fringe, where clow = 0.001 g/ml is the overall concentration of all 
solute species other than cH, cLH and cL (Equation 73), yields 99.30 fringe for the sum of the 
absolute values of the signal differences across the boundaries of all species. Johnston-Ogston 
effects on clow (Figure 16) increase the signal differences across the boundaries of the low-
concentration species, and should do so roughly in proportion to the extent by which the 
Johnston-Ogston peaks in clow exceed the intervening local minimum in clow. At tϵ = t36, such 
Johnston-Ogston effects on clow would raise the sum of the absolute values of the signal 
differences across the boundaries of all species to 99.50 fringe, which can be considered the 
predicted value of KmcMN@Plt�∗ f. 
 
When plotted as Yi(MNO∗ ) versus MNO∗  (Figure 20a), the sum of the centripetally directed boundaries 
of L and LH is found to lie within M�Ak¾x∗  to M�¿À¾x∗  (Table 19; Equation 77), and thus, by Equation 
9b, contributes to �²AcMNO∗ f� at t36 (Figure 33). Likewise, when plotted as Yi(MNO∗ ) versus MNO∗  
(Figure 20a), the sum of the centrifugally directed boundaries of H and LH is found to lie within 
M�AkÁx∗  to M�¿ÀÁx∗  (Table 19; Equation 77) and thus, by Equation 9b, also contributes to �²AcMNO∗ f� 
at t36 (Figure 33). When �²AcMNO∗ f� at t36 is integrated (Equation 77) the result obtained, 
KmcMN@Plt�∗ f = 101.49655 fringe (Table 20; Figure 39), is about 2% greater than the predicted 
value of 99.50 fringe.  
 
As KmcMN@Plt�∗ f integrates both the centripetally and centrifugally directed boundaries of LH, and 
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as the magnitude of each of those boundaries is approximately equal to cLH(rj,t0)Lkλ = 24.75 
fringe, where cLH(rj,t0) = 0.033 g/ml is the initial concentration of LH throughout the system, the 
apparent signal from LH at t36 is approximately 2(24.75 fringe) = 49.50 fringe. In effect, at t36, 
what would have been the initial signal of LH is counted twice. Meanwhile, the apparent signal 
from L and the apparent signal from H are each counted once at t36. Given cL+H = cL + cH = 0.066 
g/ml overall and clow = 0.001 g/ml overall (Equation 73), the total signal of from all of the 
boundaries could be estimated as (2cLH(rj,t0) + cL+H + clow)Lkλ = 99.75 fringe, which is within 
0.3% of 99.50 fringe. 
 
The approximately 2% difference in KmcMN@Plt�∗ f from that predicted is likely due to ²AcMNO∗ f 
being uncorrected for concentration-dependent transport, except in trivial and unrealistic cases 
of concentration-dependent transport in a system of time-independent concentration, which 
should sound like an oxymoron because such cases are restricted to systems in which all solutes 
are neutrally buoyant at all times. As a review of Equations 8 to 11 shows, 

²AcMNO∗ f ≠ ���AcMNO∗ f�MNO∗ �� 
(80) 
except at t0 = 0 s, at which time w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0 at all MNO∗ . 
 
In general, then, KAcMNO∗ f is an estimate of the total, initial signal from all solutes for which the 
apparent sedimentation coefficient is less than or equal to MNO∗ , but greater than or equal to MNOlm∗  
at time tϵ (Equations 11 and 77). The more time-independent the behaviour of those solutes, the 
more accurate an estimate of the sum of their initial signals KAcMNO∗ f becomes. Thus, as mentioned 
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with respect to Equation 11, KAcMNO∗ f is a substantially time-normalised, but not entirely time-
independent, measure of that initial signal. 
 
For a sense of how poorly KAcMNO∗ f can reflect the initial signal, consider, that, by Equation 4, at 
each radial position, rj, NFSi(rj,t0) = (0.1 g/ml)Lkλ = 75 fringe, where, for any treatment group, i, 
0.1 g/ml is the total solute concentration at each radial position at t0. Thus, NFSi(rj,t0) = 75 fringe 
can be considered the true value of the initial signal for each treatment group. As a search 
through Tables 20 to 23 shows, however, K�cMNQ¸∗ f is almost 76% smaller than NFSi(rj,t0), and 
KtcMN@P∗ f is over 35% bigger than NFSi(rj,t0), while of all the KAcMNO∗ f values, KtcMN@P∗ f, which is 
9.3794% smaller than NFSi(rj,t0), comes closest to the true value of the initial signal. 
 Thanks to the tenuous relationship of KAcMNO∗ f to NFSi(rj,t0), there is a lot of information to be 
found within KAcMNO∗ f results, and an accurate description of a treatment group might emerge 
from such results if they were extensive enough to show the dependence of KAcMNO∗ f on time and 
other critical parameters. Collecting data from a dilution series and altering any other conditions 
to which a specific system might be especially sensitive would probably be required to 
compensate for the likely absence of the sort of prior knowledge and solute-by-solute signal data 
that are readily available and heavily exploited here. 
 
A consideration of the results for MA,e∗  and MA,B,e∗  
 
Analysis of the noise-free Yi(MNO∗ ) versus MNO∗  data within each treatment group yields MA,e∗  
(Equation 13), which is the expectation value of the observations at time tϵ. Analysis of the 
Yi,h(MNO∗ ) versus MNO∗  data from the noise-modified replicates within each treatment group yields 
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the set of MA,B,e∗  (Equation 13), which is the set of observations at time tϵ, used to probe the 
significance of differences between treatment groups. For treatment groups 1 to 4, respectively, 
Tables 24 to 27 show MA,e∗  and the set of all MA,B,e∗ . Likewise for treatment groups 1 to 4, 
respectively, Figures 44 to 47 show MA,B,e∗ cMNOlm∗ , MNO∗ f versus MNO∗  and MA,e∗ cMNOlm∗ , MNO∗ f versus MNO∗ , 
which, via Equation 81, are equal to MA,B,e∗  and MA,e∗ , respectively, for MNO∗  ≥ M�¿ÀÁx∗ . Figures 44 to 47 
also show MNO∗ �²A,BcMNO∗ f� versus MNO∗ , MNO∗ �²AcMNO∗ f� versus MNO∗ , and results of their integration with 
respect to MNO∗ . 
 
As previously noted (Equation 77), multiplication of the sedimentation coefficient distribution 
functions (Equation 10), ²AcMNO∗ f and ²A,BcMNO∗ f, by the mask (Figure 32) for the corresponding 
time, t36, t51 or t66, left ²AcMNO∗ f and ²A,BcMNO∗ f unchanged wherever 5E-13 s < �MNO∗ � < 10.625E-13 s, 
and set them to zero everywhere else (Figures 33 to 36). 
 
With ²A,BcMNO∗ f multiplied by the mask (Figure 32) for time tϵ, MA,B,e∗ cMNOlm∗ , MNOlt�∗ f, the weight-
average apparent sedimentation coefficient (Equation 12) for replicate h of treatment group i 
within the entire range of MNO∗  at time tϵ, becomes indistinguishable from MA,B,e∗  (Equation 13), the 
observation for replicate h of treatment group i at time tϵ, which is calculated within the limits 
(Table 19) applied to construct the mask for time tϵ. Thus,  

MA,B,e∗ = MA,B,e∗ cMNO∗ > M�Ak¾x∗ , MNO∗ < M�¿À¾x∗ f + MA,B,e∗ cMNO∗ > M�AkÁx∗ , MNO∗ < M�¿ÀÁx∗ f
= º MNO∗ �²A,BcMNO∗ f�¶MNO∗¤÷øù[;∗¤÷¢ú[;∗KA,B(M�¿À¾x∗ ) − KA,BcM�Ak¾x∗ f + º MNO∗ �²A,BcMNO∗ f�¶MNO∗¤÷øù\;∗¤÷¢ú\;∗KA,B(M�¿ÀÁx∗ ) − KA,BcM�AkÁx∗ f
≡ º MNO∗ �²A,BcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗KA,BcMNOlt�∗ f − KA,BcMNOlm∗ f = MA,B,e∗ cMNOlm∗ , MNOlt�∗ f, 
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(81a) 
where M�Ak¾x∗  = -10.625E-13 s, M�¿À¾x∗  = -5E-13 s, M�AkÁx∗  = 5E-13 s and M�¿ÀÁx∗  = 10.625E-13 s. 
The equivalence of MA,B,e∗  to MA,B,e∗ cMNOlm∗ , MNOlt�∗ f is not general, and thus Equation 81a is not 
general, as it only applies if all ²A,BcMNO∗ < M�Ak¾x∗ f = 0, all ²A,BcM�¿À¾x∗ < MNO∗ < M�AkÁx∗ f = 0 and all 
²A,BcMNO∗ > M�¿ÀÁx∗ f = 0, as is the case here after the application of the masks (Figure 32) for t36, 
t51 and t66. 
 
Likewise, with ²AcMNO∗ f multiplied by the mask (Figure 32) for time tϵ, MA,e∗ cMNOlm∗ , MNOlt�∗ f, the 
weight-average apparent sedimentation coefficient (Equation 12) for the noise-free signal of 
treatment group i within the entire range of MNO∗  at time tϵ, becomes indistinguishable from MA,e∗  
(Equation 13), the expectation value of treatment group i at time tϵ, which is also calculated 
within the limits (Table 19) applied to construct the mask for time tϵ. Thus,  
MA,e∗ = MA,e∗ cMNO∗ > M�Ak¾x∗ , MNO∗ < M�¿À¾x∗ f + MA,e∗ cMNO∗ > M�AkÁx∗ , MNO∗ < M�¿ÀÁx∗ f

= º MNO∗ �²AcMNO∗ f�¶MNO∗¤÷øù[;∗¤÷¢ú[;∗KA(M�¿À¾x∗ ) − KAcM�Ak¾x∗ f + º MNO∗ �²AcMNO∗ f�¶MNO∗¤÷øù\;∗¤÷¢ú\;∗KA(M�¿ÀÁx∗ ) − KAcM�AkÁx∗ f ≡ º MNO∗ �²AcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗KAcMNOlt�∗ f − KAcMNOlm∗ f
= MA,e∗ cMNOlm∗ , MNOlt�∗ f, 

(81b) 
where M�Ak¾x∗  = -10.625E-13 s, M�¿À¾x∗  = -5E-13 s, M�AkÁx∗  = 5E-13 s and M�¿ÀÁx∗  = 10.625E-13 s. 
The equivalence of MA,e∗  to MA,e∗ cMNOlm∗ , MNOlt�∗ f is not general, and thus Equation 81b is not general, 
as it only applies if all ²AcMNO∗ < M�Ak¾x∗ f = 0, all ²AcM�¿À¾x∗ < MNO∗ < M�AkÁx∗ f = 0 and all 
²AcMNO∗ > M�¿ÀÁx∗ f = 0, as is the case here after the application of the masks (Figure 32) for t36, t51 
and t66. 
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Within treatment group i, the mean of all MA,B,e∗  is given by 
ÄMA,e∗ Å = 1vA i MA,B,e∗k¢

Blm , 
(82) 
where ni is the number of replicates for treatment group i. For treatment group i, the difference 
between the within-group mean, ÄMA,e∗ Å, and the expectation value, MA,e∗ , is denoted as 

�¤¢,O∗ = ÄMA,e∗ Å − MA,e∗ , 
(83)  
and is a measure of the accumulated error in ÄMA,e∗ Å. 
 
Excluding regions of minimal signal from analysis minimises systematic contributions of the 
random noise, GRNi,h(rj,tα), to each MA,B,e∗  within a treatment group, and thus minimises �¤¢,O∗ . As 
previously discussed (The signal-to-noise ratio of ²A,BcMNO∗ f worsens in proportion to 1 �t¤¥O∗ ³´�OÂ  
as MNO∗  increases; The accumulated error in KA,BcMNOlt�∗ f increases in proportion to the clipping of 
random noise; The accumulated error in ÄMA,e∗ Å increases in proportion to the clipping of random 
noise; Mitigation of data clipping), GRNi,h(rj,tα), makes the least systematic contribution to MA,B,e∗  
when, in going from w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  to ©A,BcMNO∗ f, the clipping of the positively signed and the 
negatively signed random noise is minimised (Figures 24 to 27). Even when the clipping of 
positively signed random noise within -ÆM¿∗Æ < MNO∗  < -ÆMÇ∗Æ is complemented by the clipping of 
negatively signed random noise within ÆM¿∗Æ < MNO∗  < ÆMÇ∗Æ, the net effect of the clipped random 
noise is likely to be an offset in MA,B,e∗  of each replicate at time tϵ, such that, given �¤¢,O∗  = ÄMA,e∗ Å – MA,e∗  
(Equation 83), ]�¤¢,O∗ ] will be significantly greater than zero. The relatively small values of �¤¢,O∗  for 
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treatment groups 1 and 2 (Tables 24 and 25; Figures 44 and 45) show that such offsets were 
minimised by excluding, through the judicious selection of M�Ak¾x∗ , M�¿À¾x∗ , M�AkÁx∗  and M�¿ÀÁx∗ , 
regions of low signal-to-noise from the ranges of MNO∗  used to calculate MA,B,e∗  (Equation 13). The 
relatively large values of �¤¢,O∗  for treatment groups 3 and 4 (Tables 26 and 27; Figures 46 and 47), 
result from these treatment groups having substantial regions of low signal-to-noise within the 
ranges of MNO∗  used to calculate MA,B,e∗ . 
 

i = 1 tϵ = t36 = 2160 s tϵ = t51 = 3060 s tϵ = t66 = 3960 s MA,e∗  1.03097 Svedberg -0.651551 Svedberg 0.56977 Svedberg h MA,B,�N∗  (Svedberg) MA,B,�m∗  (Svedberg) MA,B,NN∗  (Svedberg) 1 1.00390 -0.65433 0.59981 2 1.00218 -0.62807 0.61294 3 0.99784 -0.64450 0.60679 4 1.00230 -0.65377 0.58309 5 0.99148 -0.63713 0.58187 6 1.00150 -0.64263 0.57528 7 0.99895 -0.65521 0.58263 8 1.00689 -0.62817 0.57904 9 1.00976 -0.63846 0.60184 ÄMA,e∗ Å 1.00165 Svedberg -0.64247 Svedberg 0.59148 Svedberg �¤¢,O∗  -0.02933 Svedberg 0.00908 Svedberg 0.02171 Svedberg Table 24. MA,B,e∗ , MA,e∗ , ÄMA,e∗ Å, and �¤¢,O∗  for i = 1 at the times analysed: tϵ = t36, tϵ = t51 and tϵ = t66. The 
expectation values, MA,e∗ , are highlighted in blue. The replicate values (Equation 13), MA,B,e∗ , are not 
highlighted. The within-group mean values (Equation 82), ÄMA,e∗ Å, are highlighted in yellow. The 
accumulated error values (Equation 83), �¤¢,O∗ , each being the difference between the mean and 
the expectation value, are highlighted in red. The MA,e∗  values of this table are equal to 
MA,e∗ cMNOlm∗ , MNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figure 44, and the MA,B,e∗  values of this table are equal to 
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MA,B,e∗ cMNOlm∗ , MNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figure 44. 

 
Figure 44a. For i = 1 (100% KA > 0, 0% KA undefined), MA,e∗ cMNOlm∗ , MNOlt�∗ f at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) 
and t66 (∙∙∙∙∙), along with MA,B,e∗ cMNOlm∗ , MNOlt�∗ f for each replicate (1 ≤ h ≤ 9) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) 
and t66 (⎯⎯⎯), all plotted against MNO∗ . Given the masks (Figure 32) that render all ²A,BcMNO∗ f = 0 and 
all ²AcMNO∗ f = 0 outside of 5E-13 s < �MNO∗ � < 10.625E-13 s at t36, t51 and t66, by Equation 81, 
MA,B,e∗ ≡ MA,B,e∗ cMNOlm∗ , MNOlt�∗ f and MA,e∗ ≡ MA,e∗ cMNOlm∗ , MNOlt�∗ f.
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Figure 44b. For i = 1 (100% KA > 0, 0% KA undefined), º MNO∗ �²AcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗  at t36 (∙∙∙∙∙), t51 
(∙∙∙∙∙) and t66 (∙∙∙∙∙), along with º MNO∗ �²A,BcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗  for each replicate (1 ≤ h ≤ 9) at t36 
(⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), all plotted against MNO∗ . The integrals are the numerators of Equation 
81 that apply when all ²A,BcMNO∗ f = 0 and all ²AcMNO∗ f = 0 outside of 5E-13 s < �MNO∗ � < 10.625E-13 s 
at t36, t51 and t66, as ensured here through the use of masks (Figure 32). 
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Figure 44c. For i = 1 (100% KA > 0, 0% KA undefined), MNO∗ �²AcMNO∗ f� at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 
(∙∙∙∙∙), along with MNO∗ �²A,BcMNO∗ f� for each replicate (1 ≤ h ≤ 9) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
all plotted against MNO∗ . Masks (Figure 32) render all ²A,BcMNO∗ f = 0 and all ²AcMNO∗ f = 0 outside of 
5E-13 s < �MNO∗ � < 10.625E-13 s at t36, t51 and t66. 
 

i = 2 tϵ = t36 = 2160 s tϵ = t51 = 3060 s tϵ = t66 = 3960 s MA,e∗  1.03727 Svedberg -0.70853 Svedberg 0.59763 Svedberg h MA,B,�N∗  (Svedberg) MA,B,�m∗  (Svedberg) MA,B,NN∗  (Svedberg) 1 1.00594 -0.72455 0.60207 2 1.00404 -0.68164 0.62118 3 1.00333 -0.68886 0.61163 
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4 0.99920 -0.71285 0.61302 5 1.00427 -0.71804 0.62930 6 0.99889 -0.69683 0.61586 7 1.00475 -0.68697 0.65109 8 1.00881 -0.65340 0.61016 9 0.99785 -0.69806 0.61644 ÄMA,e∗ Å 1.00301 Svedberg -0.69569 Svedberg 0.61897 Svedberg �¤¢,O∗  -0.03427 Svedberg 0.01284 Svedberg 0.02134 Svedberg Table 25. MA,B,e∗ , MA,e∗ , ÄMA,e∗ Å, and �¤¢,O∗  for i = 2 at the times analysed: tϵ = t36, tϵ = t51 and tϵ = t66. The 
expectation values, MA,e∗ , are highlighted in blue. The replicate values (Equation 13), MA,B,e∗ , are not 
highlighted. The within-group mean values (Equation 82), ÄMA,e∗ Å, are highlighted in yellow. The 
accumulated error values (Equation 83), �¤¢,O∗ , each being the difference between the mean and 
the expectation value, are highlighted in red. The MA,e∗  values of this table are equal to 
MA,e∗ cMNOlm∗ , MNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figure 45, and the MA,B,e∗  values of this table are equal to 
MA,B,e∗ cMNOlm∗ , MNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figure 45. 
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Figure 45a. For i = 2 (99% KA > 0, 1% KA undefined), MA,e∗ cMNOlm∗ , MNOlt�∗ f at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and 
t66 (∙∙∙∙∙), along with MA,B,e∗ cMNOlm∗ , MNOlt�∗ f for each replicate (1 ≤ h ≤ 9) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and 
t66 (⎯⎯⎯), all plotted against MNO∗ . Given the masks (Figure 32) that render all ²A,BcMNO∗ f = 0 and all 
²AcMNO∗ f = 0 outside of 5E-13 s < �MNO∗ � < 10.625E-13 s at t36, t51 and t66, by Equation 81, 
MA,B,e∗ ≡ MA,B,e∗ cMNOlm∗ , MNOlt�∗ f and MA,e∗ ≡ MA,e∗ cMNOlm∗ , MNOlt�∗ f. 
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Figure 45b. For i = 2 (99% KA > 0, 1% KA undefined), º MNO∗ �²AcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗  at t36 (∙∙∙∙∙), t51 
(∙∙∙∙∙) and t66 (∙∙∙∙∙), along with º MNO∗ �²A,BcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗  for each replicate (1 ≤ h ≤ 9) at t36 
(⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), all plotted against MNO∗ . The integrals are the numerators of Equation 
81 that apply when all ²A,BcMNO∗ f = 0 and all ²AcMNO∗ f = 0 outside of 5E-13 s < �MNO∗ � < 10.625E-13 s 
at t36, t51 and t66, as ensured here through the use of masks (Figure 32). 
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Figure 45c. For i = 1 (99% KA > 0, 1% KA undefined), MNO∗ �²AcMNO∗ f� at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 
(∙∙∙∙∙), along with MNO∗ �²A,BcMNO∗ f� for each replicate (1 ≤ h ≤ 9) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
all plotted against MNO∗ . Masks (Figure 32) render all ²A,BcMNO∗ f = 0 and all ²AcMNO∗ f = 0 outside of 
5E-13 s < �MNO∗ � < 10.625E-13 s at t36, t51 and t66. 
 

i = 3 tϵ = t36 = 2160 s tϵ = t51 = 3060 s tϵ = t66 = 3960 s MA,e∗  0.62213 Svedberg -1.37829 Svedberg 0.42570 Svedberg h MA,B,�N∗  (Svedberg) MA,B,�m∗  (Svedberg) MA,B,NN∗  (Svedberg) 1 0.60630 -1.18811 0.49612 2 0.59558 -1.19151 0.50404 3 0.58635 -1.15177 0.49197 
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ÄMA,e∗ Å 0.59608 Svedberg -1.17713 Svedberg 0.49738 Svedberg �¤¢,O∗  -0.02606 Svedberg 0.20116 Svedberg 0.07167 Svedberg Table 26. MA,B,e∗ , MA,e∗ , ÄMA,e∗ Å, and �¤¢,O∗  for i = 3 at the times analysed: tϵ = t36, tϵ = t51 and tϵ = t66. The 
expectation values, MA,e∗ , are highlighted in blue. The replicate values (Equation 13), MA,B,e∗ , are not 
highlighted. The within-group mean values (Equation 82), ÄMA,e∗ Å, are highlighted in yellow. The 
accumulated error values (Equation 83), �¤¢,O∗ , each being the difference between the mean and 
the expectation value, are highlighted in red. The MA,e∗  values of this table are equal to 
MA,e∗ cMNOlm∗ , MNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figure 46, and the MA,B,e∗  values of this table are equal to 
MA,B,e∗ cMNOlm∗ , MNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figure 46. 

 
Figure 46a. For i = 3 (50% KA > 0, 50% KA undefined), MA,e∗ cMNOlm∗ , MNOlt�∗ f at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) 
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and t66 (∙∙∙∙∙), along with MA,B,e∗ cMNOlm∗ , MNOlt�∗ f for each replicate (1 ≤ h ≤ 3) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) 
and t66 (⎯⎯⎯), all plotted against MNO∗ . Given the masks (Figure 32) that render all ²A,BcMNO∗ f = 0 and 
all ²AcMNO∗ f = 0 outside of 5E-13 s < �MNO∗ � < 10.625E-13 s at t36, t51 and t66, by Equation 81, 
MA,B,e∗ ≡ MA,B,e∗ cMNOlm∗ , MNOlt�∗ f and MA,e∗ ≡ MA,e∗ cMNOlm∗ , MNOlt�∗ f. 

 
Figure 46b. For i = 2 (50% KA > 0, 50% KA undefined), º MNO∗ �²AcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗  at t36 (∙∙∙∙∙), t51 
(∙∙∙∙∙) and t66 (∙∙∙∙∙), along with º MNO∗ �²A,BcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗  for each replicate (1 ≤ h ≤ 3) at t36 
(⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), all plotted against MNO∗ . The integrals are the numerators of Equation 
81 that apply when all ²A,BcMNO∗ f = 0 and all ²AcMNO∗ f = 0 outside of 5E-13 s < �MNO∗ � < 10.625E-13 s 
at t36, t51 and t66, as ensured here through the use of masks (Figure 32). 
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Figure 46c. For i = 1 (50% KA > 0, 50% KA undefined), MNO∗ �²AcMNO∗ f� at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 
(∙∙∙∙∙), along with MNO∗ �²A,BcMNO∗ f� for each replicate (1 ≤ h ≤ 3) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
all plotted against MNO∗ . Masks (Figure 32) render all ²A,BcMNO∗ f = 0 and all ²AcMNO∗ f = 0 outside of 
5E-13 s < �MNO∗ � < 10.625E-13 s at t36, t51 and t66. 
 

i = 4 tϵ = t36 = 2160 s tϵ = t51 = 3060 s tϵ = t66 = 3960 s MA,e∗  0.28140 Svedberg -1.78094 Svedberg 0.33734 Svedberg h MA,B,�N∗  (Svedberg) MA,B,�m∗  (Svedberg) MA,B,NN∗  (Svedberg) 1 0.29238 -1.30647 0.53019 2 0.29510 -1.26882 0.53799 3 0.30031 -1.20425 0.50524 
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ÄMA,e∗ Å 0.29593 Svedberg -1.25985 Svedberg 0.52447 Svedberg �¤¢,O∗  0.01453 Svedberg 0.52110 Svedberg 0.18713 Svedberg Table 27. MA,B,e∗ , MA,e∗ , ÄMA,e∗ Å, and �¤¢,O∗  for i = 4 at the times analysed: tϵ = t36, tϵ = t51 and tϵ = t66. The 
expectation values, MA,e∗ , are highlighted in blue. The replicate values (Equation 13), MA,B,e∗ , are not 
highlighted. The within-group mean values (Equation 82), ÄMA,e∗ Å, are highlighted in yellow. The 
accumulated error values (Equation 83), �¤¢,O∗ , each being the difference between the mean and 
the expectation value, are highlighted in red. The MA,e∗  values of this table are equal to 
MA,e∗ cMNOlm∗ , MNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figure 47, and the MA,B,e∗  values of this table are equal to 
MA,B,e∗ cMNOlm∗ , MNO∗ f at MNO∗  ≥ M�¿ÀÁx∗  in Figure 47. 

 
Figure 47a. For i = 4 (0% KA > 0, 100% KA undefined), MA,e∗ cMNOlm∗ , MNOlt�∗ f at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) 
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and t66 (∙∙∙∙∙), along with MA,B,e∗ cMNOlm∗ , MNOlt�∗ f for each replicate (1 ≤ h ≤ 3) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) 
and t66 (⎯⎯⎯), all plotted against MNO∗ . Given the masks (Figure 32) that render all ²A,BcMNO∗ f = 0 and 
all ²AcMNO∗ f = 0 outside of 5E-13 s < �MNO∗ � < 10.625E-13 s at t36, t51 and t66, by Equation 81, 
MA,B,e∗ ≡ MA,B,e∗ cMNOlm∗ , MNOlt�∗ f and MA,e∗ ≡ MA,e∗ cMNOlm∗ , MNOlt�∗ f. 

 
Figure 47b. For i = 2 (1-0% KA > 0, 0% KA undefined), º MNO∗ �²AcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗  at t36 (∙∙∙∙∙), t51 
(∙∙∙∙∙) and t66 (∙∙∙∙∙), along with º MNO∗ �²A,BcMNO∗ f�¶MNO∗¤¥O·´Z∗¤¥O·¸∗  for each replicate (1 ≤ h ≤ 3) at t36 
(⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), all plotted against MNO∗ . The integrals are the numerators of Equation 
81 that apply when all ²A,BcMNO∗ f = 0 and all ²AcMNO∗ f = 0 outside of 5E-13 s < �MNO∗ � < 10.625E-13 s 
at t36, t51 and t66, as ensured here through the use of masks (Figure 32). 
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Figure 47c. For i = 1 (100% KA > 0, 0% KA undefined), MNO∗ �²AcMNO∗ f� at t36 (∙∙∙∙∙), t51 (∙∙∙∙∙) and t66 
(∙∙∙∙∙), along with MNO∗ �²A,BcMNO∗ f� for each replicate (1 ≤ h ≤ 3) at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), 
all plotted against MNO∗ . Masks (Figure 32) render all ²A,BcMNO∗ f = 0 and all ²AcMNO∗ f = 0 outside of 
5E-13 s < �MNO∗ � < 10.625E-13 s at t36, t51 and t66. 
 
STATISTICAL STATISTICAL STATISTICAL STATISTICAL ANALYSISANALYSISANALYSISANALYSIS 
 
One----way analyses of variance (ANOVA), Bonferroni adjusted t-test (2-tailed), and confidence 
intervals about mean values 
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This material is largely drawn from the work of Hembree (2006) and Prins et al. (2006).  
 
ANOVA 
 
A one-way analyses of variance (ANOVA) is used to test for statistically significant differences in 
population means between treatment groups. To discuss the ANOVA and subsequent analyses, a 
few definitions and explanations of notation are needed.  
 
The treatment groups are indexed by i, and ni denotes the number of observations (A.K.A. 
replicates) in treatment group i. Thus, for g treatment groups in a total population of Ntot 
observations, 1 ≤ i ≤ g, and 

>�L� = i vA
0

Alm . 
(84)  
The degrees of freedom for treatment (A.K.A. the degrees of freedom among, or between, groups) 
is [g - 1], and the degrees of freedom for error (A.K.A. the degrees of freedom within groups) is 
[Ntot - g]. The observations within each group are indexed by h. Thus, 1 ≤ h ≤ ni within a 
treatment group, for which the mean of the observations is given by 

ÒA = 1vA i ÑA,B
k¢

Blm  , 
(85)  
where Ai,h is the value of observation h within treatment group i. 
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It is assumed that the observations fit a model given by  
ÑA,B = Ò + ∆ÒA + �A,B = ç1² i ÒA

0
Alm è + ∆ÒA + �A,B , 

(86a)  
where µ is the grand mean, Δµi is the deviation of the mean of treatment group i from the grand 
mean (∆ÒA = ÒA − Ò), and ei,h is the residual, which must be normally distributed (Equation 24) 
about Ò + ∆ÒA with a standard deviation that does not vary from one treatment group to another. 
Thus, each observation, Ai,h, is the sum of a deterministic component, µ + Δµi, and a random 
component, ei,h. As ∆ÒA = ÒA − Ò, 

i ∆ÒA
0

Alm = i(ÒA − Ò)0
Alm = çi ÒA

0
Alm è − ²Ò = 0. 

(86b) 
The deterministic component is assumed to be a function of an independent variable that defines 
each treatment group, i.  
 
Provided that that ei,h follows “a Gaussian distribution with fixed location and spread” (Hembree, 
2006), as it should if Equation 86 is applicable to the observations, then the ratio of the mean of 
the sum of squares of treatments with [g - 1] degrees of freedom, TMSb (Equation 92), to the mean 
of the sum of squares of error with [Ntot - g] degrees of freedom, eMSw (Equation 91), follows an F 
distribution with corresponding degrees of freedom ([g - 1] and [Ntot - g]). Therefore, at a chosen 
level of confidence, an F-test can be used to judge whether Δµi is significantly different from zero 
in one or more treatment groups. 
 
All observations within all treatment groups are included in both the raw sum, 
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Ñ�L� = i i ÑA,B
k¢

Blm
0

Alm = i vAÒA
0

Alm , 
(87)  
and the raw sum of squares, 

Ñ¤ = i icÑA,Bft k¢
Blm

0
Alm . 

(88)  
The mean of the raw sum squared is 

Ò¤ = (Ñ�L�)t>�L�  , 
(89)  
and the correction term of the mean is 

ÒALêê = i 1vA (vAÒA)t0
Alm  . 

(90)  
The mean of the sum of squares of error (A.K.A. the mean square error within groups) is 

���M = cÑ¤ − ÒALêêf 1>�L� − ² , 
(91) 
and the mean of the sum of squares of treatments is 

H��� = cÒALêê − Ò¤f 1² − 1 . 
(92) 
The denominator of Equation 91 is equal to the [Ntot - g] degrees of freedom in eMSw, and the 
denominator of Equation 92 is equal to the [g - 1] degrees of freedom in TMSb.  
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The F statistic, F([g - 1],[Ntot - g]), is equal to TMSb/eMSw, and is expressed as a function of the 
degrees of freedom in TMSb and eMSw. The F statistic is greater than 1 when the variance between 
two or more groups is greater than the variance within groups. (The greater the variance 
between groups, and the lower the variance within groups, the higher the value of the F statistic 
will be.) The statistical significance of the variation between groups can be expressed as the 
probability, p, that the variation is due solely to chance. That probability (0 ≤ p ≤ 1) is equal to 1 
minus the integral of the probability density function (F-PDF) for the F distribution evaluated 
from 0 to F([g - 1],[Ntot - g]). The integral of the F-PDF is the corresponding cumulative 
probability distribution, (F-CPD), which takes as its arguments the F statistic, [g - 1] and [Ntot - g], 
and returns 1 minus the corresponding p value. The inverse F-CPD takes as its arguments (1 - p), 
[g - 1] and [Ntot - g], and returns the corresponding F statistic. Thus, the inverse F-CPD is used to 
determine the lowest value of the F statistic that, at [g - 1] degrees of freedom of treatment and 
[Ntot - g] degrees of freedom of error, corresponds to a p value less than or equal to an acceptable 
limit.  
 
The acceptable limit of the p value is the applied level of confidence, which will be denoted here 
as (1 - α). Thus, the significance level, α, is the accepted risk that the effects of treatments on 
observations are due solely to chance. If the treatments have a significant effect on the 
observations, then TMSb/eMSw should be greater than the F statistic returned by the inverse F-CPD 
at (1 - p) = (1 - α) with [g - 1] degrees of freedom of treatment and [Ntot - g] degrees of freedom 
of error. In terms of probability, if the treatments have a significant effect on the observations, 
then α should be greater than the p value returned by 1 - F-CPD at F([g - 1],[Ntot - g]) = TMSb/eMSw, 
where the [g - 1] degrees of freedom of treatment and the [Ntot - g] degrees of freedom of error 
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correspond to the degrees of freedom in TMSb and eMSw, respectively.  
 
Bonferroni adjusted t-test (2-tailed)  
 
Provided that the ANOVA has demonstrated their significance beforehand, differences between 
treatment groups are assessed by the Bonferroni adjusted t-test (2-tailed), which is a post-hoc 
test that controls for the family-wise error rate. Comparisons between different treatment groups 
are made pair-wise. Using i and j to index two treatment groups in a pair-wise comparison, for g 
treatment groups, 1 ≤ i ≤ g and 1 ≤ j ≤ g. A comparison between i and j is considered identical to 
a comparison between j and i, and i cannot equal j in any comparison. Thus, for g treatment 
groups, there are q = g(g - 1)/2 unique, pair-wise comparisons between different treatment 
groups.  
 
Denoting the means of treatment groups i and j as μi and μj, respectively, their mean difference,  

∆ÒAd = ÒA − Òd , 
(93)  
is calculated for each unique, pair-wise comparison between different (i ≠ j) treatment groups. 
As Δμij = -Δμji, there are 2q such parameters in g treatment groups, but as ÆΔμijÆ = Æ-ΔμjiÆ, half of 
those parameters can be viewed as redundant.  
 
Denoting the number of replicates in treatment groups i and j as ni and nj, respectively, the mean 
square error within groups, eMSw (Equation 91), is used to calculate the standard error of the 
mean difference,  

�∆a¢O = c���Mp1 vAÂ + 1 vdÂ qfx.�, 
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(94)  
for each unique, pair-wise comparison between different (i ≠ j) treatment groups. As �∆a¢O  = 
�∆aO¢ , there are q such parameters in g treatment groups.  
 
A critical value (A.K.A. test statistic), given by  

Dc[vA − 1], pvd − 1qf = ∆ÒAd �∆a¢O , 
(95)  
is then calculated for each unique, pair-wise comparison between different (i ≠ j) treatment 
groups. The number of critical values is equal to the number of mean differences.  
 
Integrating Student’s t-distribution function from -Æt([ni - 1] + [nj - 1])Æ to Æt([ni - 1] + [nj - 1])Æ at 
[Ntot - g] degrees of freedom, and subtracting the result from 1, yields pLSD, which is the least-
square-difference probability that the difference in the means of treatment groups i and j could 
be due to chance. Multiplying pLSD by q yields pBonf, which is the Bonferroni-adjusted probability 
that the difference in the means of treatment groups i and j could be due to chance. As pBonf 
exceeds pLSD by a factor of q whenever q is greater than 1, and as q is equal to the number of 
comparisons between treatment groups, pBonf accounts for an expectation that the risk of 
mistaking noise for information increases as the number of comparisons increases.  
 
Confidence intervals about Δμij 
 
Any given observation, h, within treatment group i is denoted as Ai,h, of which the deterministic 
component is µ + Δµi, where Δµi = µi - µ (Equation 86). Likewise, any given observation, h, within 
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treatment group j is denoted as Aj,h, of which the deterministic component is µ + Δµj, where Δµj = 
µj - µ. Thus, the mean difference between the deterministic components for groups i and j is equal 
to (µ + Δµi) – (µ + Δµj) = Δµi - Δµj = µi - µj = Δμij, which is the difference between the means of 
treatment groups i and j (Equation 93).  
 
A true value of the parameter sought must underlie each observation, Ai,h, within treatment 
group i. Denoting such a true value as Ai (Equations 104 and 105), then if Equation 86 holds, Ai 
can be equated to µ + Δµi in the limit as the number of replicates within each treatment group 
approaches infinity. Likewise, if Equation 86 holds, Aj can be equated to µ + Δµj in the limit as the 
number of replicates within each treatment group approaches infinity. As such, Aj denotes the 
true value that must underlie each observation, Aj,h, within treatment group j. Thus, ΔAij, the 
mean difference between the true values for groups i and j, is equal to Ai - Aj. 
 
The (1 - α)100% confidence interval about each Δμij is given by  

±Î∆a¢O = ∆ÒAd ± �∆a¢OD([Ø 2©Â ], [>�L� − ²]), 
(96)  
where t([α/2q],[Ntot - g]) is the upper critical value of Student’s t-distribution at [Ntot - g] degrees 
of freedom and a Bonferroni-adjusted significance level of [α/2q] for a two-sided test. (If 
α = 0.05, 95% confidence intervals are obtained.) At [Ntot - g] degrees of freedom, the integral of 
Student’s t-distribution from -t([α/2q],[Ntot - g]) to t([α/2q],[Ntot - g]) is equal to (1 - 2[α/2q]). If 
no correction for the effects of multiple comparisons were needed, (1 - 2[α/2q]) would be 
considered the probability that Δμij will be found within ±Î∆a¢O  in cases where ΔAij is found 
within ±Î∆a¢O . Corrected for the effects of multiple comparisons, (1 - 2q[α/2q]) is the probability 
that Δμij will be found within ±Î∆a¢O  in cases where ΔAij is found within ±Î∆a¢O . Differences 
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between means are considered significant if pBonf < α.  
 
The independent variable on which the deterministic component of Ai,h depends 
 
A generic parameter, P, is henceforth treated as the sole independent variable on which, for the 
results under consideration, the deterministic component, µ + Δµi, of each observation, Ai,h 
(Equation 86), depends. The value of P that corresponds to treatment group i is denoted as Pi. As 
such, Pi is the value of P that defines treatment group i. 
 
Confidence intervals about μi, based on the standard error of the mean  
 
The standard error of the mean is  

�a¢ = (���M[1 vAÂ ])x.�, 
(97)  
where ni is the number of replicates in the group for which μi is the mean. Using �a¢ , a 
(1 - α)100% confidence interval about each μi can be defined as ±Îa¢  = μi ± δi, with the error in μi 
given by 

âA = �a¢D([Ø 2Â ], [>�L� − ²]). 
(98)  
At [Ntot - g] degrees of freedom, the integral of Student’s t-distribution function from 
-t([α/2],[Ntot - g]) to t([α/2],[Ntot - g]) is equal to (1 - 2[α/2]),which can be viewed as the 
probability that μi will be found within ±Îa¢  in cases where Ai is found within ±Îa¢ .  
 
On graphs of μi and ±Îa¢  versus the parameter, Pi, by which treatment groups are defined, an 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

205 

 

overlap in the confidence intervals for different values of Pi would indicate a failure of the �a¢-
based (1 - α)100% confidence level test. However, the Bonferroni adjusted t-test may fail to show 
a significant difference between two means, μa and μb, where, for μa < μb, the comparable 
confidence intervals, +Îaø  and -ÎaR , do not overlap. Alternatively, in some cases, the Bonferroni 
adjusted t-test may show that there is a significant difference between two means, μa and μb, 
where, for μa < μb, the comparable confidence intervals, +Îaø  and -ÎaR , do overlap. To graphically 
present the results of the Bonferroni adjusted t-tests, a �∆a¢O-based (1 - α)100% confidence level 
test must be used.  
 
Confidence intervals about μi, based on the standard errors of the mean difference  
 
A �∆a¢O-based (1 - α)100% confidence interval about each μi can be defined as 

±Îa¢O = ÒA ± âAd , 
(99)  
with the error in μi given by 

âAd = �∆a¢OD([Ø 2©Â ], [>�L� − ²])2 . 
(100)  
By this approach, on graphs of μi and ±Îa¢O  versus Pi, the parameter by which treatment groups 
are defined, an overlap in the confidence intervals for different values of Pi would indicate a 
failure of both the �∆a¢O-based (1 - α)100% confidence level test and the corresponding 
Bonferroni-adjusted t-test, while the absence of an overlap would indicate that neither the test 
based on the standard error of the mean (Equations 97 and 98) nor the Bonferroni-adjusted t-
test had failed. Such tests are most likely to fail in pair-wise comparisons of means that are most 
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alike. In some cases, the means that are most alike will be those from treatment groups that are 
most alike with respect to the independent variable, Pi. If Pi monotonically decreases as i 
increases, or if Pi monotonically increases as i increases, Pi will be most alike to P[i - 1] or P[i + 1]. 
(For Pi monotonically decreasing as i increases, P1 > P2 > … P[i - 1] > Pi > P[i + 1] … > P[g - 1] > Pg. For 
Pi monotonically increasing as i increases, P1 < P2 < … P[i - 1] < Pi < P[i + 1] … < P[g - 1] < Pg.)  
 
For Pi monotonically decreasing as i increases, or for Pi monotonically increasing as i increases, if 
it is also true that μi monotonically increases as i increases, so that μ1 < μ2 < … μ[i - 1] < μi < μ[i + 1] 
… < μ[g - 1] < μg, then graphs are constructed using −Îa¢[¢½¸]  and +Îa¢[¢»¸]  for the lower bound and 
upper bound, respectively, of the confidence interval about μi with two exceptions within 1 ≤ i ≤ 
g: −Îa¸,b  is used for the lower bound of the confidence interval about μ1; and +Îab,¸  is used for 
the upper bound of the confidence interval about μg. 
 
For Pi monotonically decreasing as i increases, or for Pi monotonically increasing as i increases, if 
it is also true that μi monotonically decreases as i increases, so that μ1 > μ2 > … μ[i - 1] > μi > μ[i + 1] 
… > μ[g - 1] > μg, then graphs are constructed using −Îa¢[¢»¸]  and +Îa¢[¢½¸]  for the lower bound and 
upper bound, respectively, of the confidence interval about μi with two exceptions within 1 ≤ i ≤ 
g: +Îa¸,b  is used for the upper bound of the confidence interval about μ1; and −Îab,¸  is used for 
the lower bound of the confidence interval about μg. 
 
Where μi neither monotonically increases nor monotonically decreases as Pi increases, the lower 
and upper bounds of the confidence interval about μi must be constructed on a more localised 
basis. For example, within 1 < i < g, the confidence interval about the mean, μi, can be expressed 
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as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ , in which the index i is replaced by P, 
such that ï[A∓m] = P- < P = Pi < P+ = ï[A±m], where P is assumed to monotonically increase or 
decrease with i. At ï[A∓m] = P-, Ò[A∓m] = Òe�. At P = Pi, ÒA = Òe. At ï[A±m] = P+, Ò[A±m] = Òe�. For 
Òe� > Òe > Òe�, −Îa¢[¢∓¸] = −Îac,c»  and +Îa¢[¢±¸] = +Îac,c½ . For Òe�< Òe < Òe�, −Îa¢[¢∓¸] =
−Îac,c½  and +Îa¢[¢±¸] = +Îac,c» . Of the four other possible inequalities relating Òe�, Òe and Òe�, 
the nearest value to Òe determines the confidence interval about Òe. For either Òe� > Òe� > Òe or 
Òe < Òe� < Òe�, −Îac,c½  and +Îac,c» . For either Òe� > Òe� > Òe or Òe < Òe� < Òe�, −Îac,c»  and 
+Îac,c½ . It is assumed that P1 and Pg are the extrema of P at which special cases arise, as there is 
no P- relative to the minimum value of P, and there is no P+ relative to the maximum value of P. 
As such, for the lowest value of P at which data exist, P- is equated to the highest value of P at 
which data exist. Similarly, for the highest value of P at which data exist, P+ is equated to the 
lowest value of P at which data exist. 
 
Statistical analysis of AUC simulation results for any given time of analysis, tϵ  
 
At each time of analysis, the Bonferroni adjusted t-test (2-tailed) is used to place confidence 
intervals about the mean value of the observations in each treatment group. Tables 24 to 27 
present the observations, the mean value and the expectation value for each treatment group at 
each time of analysis. As a significance level of α = 0.05 is applied in all analyses, a (1 - α)100% = 
95% confidence interval about each mean difference, Δμij (Equation 96), and about each mean, μi 
(Equation 99), is obtained. These confidence intervals constitute the comparative statistics by 
which the significance of the difference between any two mean values is judged. 
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The notation of the section on statistical analysis (Equations 84 to 100) can be equated, or at 
least related, to the parameters previously defined to describe the results of AUC simulation for 
the various treatment groups. At time tϵ, both Ai,h and (Equation 86) MA,B,e∗  (Equation 81a) denote 
the observation for replicate h of treatment group i. At time tϵ, then, 

ÑA,B ≡ MA,B,e∗ , 
(101) 
the values of which are tabulated for each treatment group, i, at time, tϵ (Tables 24 to 27). 
Likewise, at time tϵ, both μi (Equation 85) and ÄMA,e∗ Å (Equation 82) denote the within-group mean 
value for treatment group i. Thus, at time tϵ, 

ÒA ≡ ÄMA,e∗ Å, 
(102) 
the value of which is tabulated for each treatment group, i, at time, tϵ (Tables 24 to 27). 
 
The generic parameter, P, was previously defined as the sole independent variable on which, for 
the results under consideration, the deterministic component, µ + Δµi, of each observation, Ai,h 
(Equation 86), depends. Just prior to the description of the various confidence intervals 
(Equations 96 to 100), the value of P that corresponds to treatment group i was denoted as Pi. 
Applying such notation to the systems originally described as dependent on %KA > 0, and 
choosing a normalised scale for the alternate independent variable, yields the dimensionless 

ï = %f> > 0100% . 
(103a) 
Table 28 shows the interrelationships between Pi, i and %KA > 0, which can be summarised as  

ïA = (%f> > 0)A100% , 
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(103b) 
where (%KA > 0)i is the %KA > 0 that defines treatment group i (Tables 17 and 28). Likewise, Pi 
is the value of P that defines treatment group i (Tables 17 and 28). Thus, (%KA > 0)i and Pi are 
alternative parameters by which to define each treatment group. 
 
Just prior to Equation 96, which describes the (1 - α)100% confidence interval about each Δμij, Ai 
was defined as the true value that must underlie each observation, Ai,h, within treatment group i. 
In Equations 104 and 105, which follow next, Ai is redefined as the expectation value of the 
observations within treatment group i. The two definitions are mutually compatible, however, in 
that, for treatment group i, Ai is always the expectation value, and Ai is also the true value if 
Equation 86 holds. Where Ai satisfies both definitions, at time tϵ, Ai is equal to the known 
expectation value, MA,e∗ , as MA,e∗ , by virtue of being determined from noise-free data, is the true value 
that underlies each observation, Ai,h, within treatment group i at time tϵ.  
 
At a given time, tϵ, in the limit as the number of replicates, ni and each nj≠i, in all treatment 
groups, i and each j ≠ i, approaches infinity, the deterministic component, µ + Δµi, of each 
observation, Ai,h (Equation 86), of treatment group i, should approach the expectation value, Ai, of 
treatment group i. Thus, at a given time, tϵ, 

limk¢→Ú¿kW ë¿ABkO�¢→Ú
(Ò + ∆ÒA) = ÑA . 

(104a)  
Additionally, if the data strictly conform to the model described by Equation 86, then at time tϵ, Ai 
is also the true value that underlies each observation, Ai,h, within treatment group i, in which case, 

ÑA ≡ MA,e∗ , 
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(104b)  
where MA,e∗  (Equation 81b) is both the true value and the known expectation value of treatment 
group i at time tϵ (Tables 24 to 27). 
 
Where Ai ≠ MA,e∗ , Ai nevertheless remains the deterministic expectation value obtained when 
µ + Δµi is subjected to the limit applied in Equation 104a, and as such, Ai simply differs from MA,e∗  
by an offset arising from the presence of noise of a sort that is not included in the model 
represented by Equation 86. Thus, the wholly deterministic analogue of Equation 86 is given by  

ÑA = Ñ + ∆ÑA = ç1² i ÑA
0

Alm è + ∆ÑA, 
(105a)  
where Ai (Equation 104a) is the expectation value of treatment group i, A is the grand mean of 
the expectation values of all treatment groups, and ΔAi is the deviation of Ai from A, such that ΔAi 
= Ai - A. Consequently, 

i ∆ÑA
0

Alm = i(ÑA − Ñ)0
Alm = çi ÑA

0
Alm è − ²Ñ = 0. 

(105b)  
At two of the three times analysed, μi changes more desultorily than monotonically as Pi 
increases. Thus, at each time of analysis, tϵ, μi is sometimes expressed as μP, and the �∆a¢O-based 
(1 - α)100% confidence interval about μi is sometimes expressed as either −Îac,c½  < μP < +Îac,c»  
or −Îac,c»  < μP < +Îac,c½ . A detailed description of this notation, in which the index i is replaced 
by P, is given at the end of the section describing the �∆a¢O-based (1 - α)100% confidence interval 
about μi (Equation 99). In general, any parameter indexed by i can be indexed by the 
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corresponding value of P = Pi, which is shown as a function of i in Table 28. For example, in the 
legends of figures that show −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ , the expectation 
value is equated to MA,e∗  and is expressed as Me,e∗ , where Me,e∗  = MA,e∗  (Equation 81b) at P = Pi. 
Likewise, if Equation 86 held, Me,e∗  would be equal to AP, where AP = Ai (Equations 104 and 105) 
at P = Pi.  
 
In addition to the comparative statistics, descriptive statistics are presented for each treatment 
group at each time. Among the descriptive statistics presented, all but the standard deviation of 
the replicate observations about their mean have been described already. Within each treatment 
group, i, at each time, tϵ, the ni (Table 28) replicate observations, of which Ai,h = MA,B,e∗  is that of 
replicate h, are distributed about their mean value, μi = ÄMA,e∗ Å, with a standard deviation of  

ÔA = g 1vA − 1 �icÑA,B − ÒAftk¢
Blm �hx.�. 

(106) 
 
Common statistical parameters  
 
Tables 28 and 29 show parameters that apply to all times of analysis. Table 28 lists the value of Pi 
(Equation 103) for each treatment group, i. Table 29 lists commonly applied statistical 
parameters and their values, all of which are dimensionless. 
 
i (%KA > 0)i Pi ni 
1 100 1.00 n1 = 9 
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2 99 0.99 n2 = 9 
3 50 0.50 n3 = 3 
4 0 0.00 n4 = 3 
Table 28. Parameters that apply to all times analysed, where all but (%KA > 0)i are 
dimensionless. The calculation of Pi from (%KA > 0)i is given by Equation 103. 
 
statistic notation value 
total population (of all replicates) Ntot 24 
number of treatment groups g 4 
degrees of freedom of error [Ntot - g] 20 
degrees of freedom of treatment [g - 1] 3 
pair-wise between-group comparisons q 6 
significance level α 0.05 
Bonferroni-adjusted significance level [α/2q] 4.16667E--3 
upper critical value of Student’s t-distribution t([α/2q],[Ntot - g]) 2.92712 
Table 29. Dimensionless statistical parameters that apply at all times analysed. The total 
population is given by Equation 84. The upper critical value of Student’s t-distribution at [Ntot - g] 
degrees of freedom and a Bonferroni-adjusted significance level of [α/2q] for a two-sided test is 
t([α/2q],[Ntot - g]), which is applied first to the (1 - α)100% confidence interval about each Δμij in 
Equation 96, and is applied later to the �∆a¢O-based (1 - α)100% confidence interval about μi in 
Equations 99 and 100.  
 
Statistical analysis of AUC simulation results for t36 
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The statistical analysis of the data for t36 in Tables 24 to 27 yielded the results presented in 
Tables 30 to 33. Table 30 collects statistical parameters that apply to all treatment groups at tϵ = 
t36. Table 31 lists descriptive statistical parameters that apply to each treatment group at tϵ = t36. 
Table 32 lists the comparative statistical parameters that apply to the (1 - α)100% confidence 
interval about each pair-wise mean difference, Δμij (Equation 96), between treatment groups at tϵ 
= t36. Table 33 lists the comparative statistical parameters that constitute the �∆a¢O-based 
(1 - α)100% confidence interval about the mean, μi, of each treatment group at tϵ = t36. Figure 48 
shows, as a function of P, the �∆a¢O-based (1 - α)100% confidence interval about the mean, either 
as −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½  (Table 33), along with the known expectation 
value, Me,e∗  (Equation 81b), at tϵ = t36. Where Equation 86 holds, AP (Equations 104 and 105) is 
identical to Me,e∗  at tϵ = t36. 
 
Table 32 gives the value of the Bonferroni adjusted t-test (2-tailed), pBonf, for each pair-wise 
mean difference, Δμij at tϵ = t36. Less than (1 - α)100% confidence is accorded to the difference 
between any two means for which the comparison yields pBonf > α, and by this measure, with α = 
0.05, μP=1.00 (identical to μi=1) and μP=0.99 (identical to μi=2) are considered indistinguishable, as 
their comparison yields pBonf = q(pLSD) = 6(0.59182) > 1. Likewise, in Table 33 and in Figure 48, 
less than (1 - α)100% confidence is accorded to the difference between any two means with 
overlapping confidence intervals, and by this measure as well, μP=1.00 (identical to μi=1) and 
μP=0.99 (identical to μi=2) are considered indistinguishable. 
 
Equation statistic value 87 raw sum Atot 2.07179E-12 s 

88 raw sum of squares Asq 1.94131E-25 s2 
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89 mean of the raw sum squared μsq 1.78846E-25 s2 
90 correction term of the mean μcorr 1.94125E-25 s2 
91 mean square error within groups eMSw 2.81014E-31 s2 
92 mean of the sum of squares of treatments TMSb 5.09288E-27 s2 

Table 30. Statistical parameters that apply to treatment groups 1 to 4 at tϵ = t36 only. The ratio of 
two of these statistics, TMSb and eMSw, yield F = TMSb/eMSw = 18,123. The results in this table are 
calculated using the replicate observations for t36, which are the sets of all Ai,h ≡ MA,B,�N∗  given in 
Tables 24 to 27. 
 
treatment group %KA > 0 replicates mean (Svedberg) standard deviation (Svedberg) 

�a¢-based (1 - α)100% confidence interval (Svedberg) i (Pi)100% ni μi = ÄMA,e∗ Å σi −Îa¢ +Îa¢ 
1 100 9 1.00165 5.29334E-3 9.96473E-1 1.00682 
2 99 9 1.00301 3.64291E-3 9.97835E-1 1.00818 
3 50 3 5.96079E-1 9.98079E-3 5.87121E-1 6.05038E-1 
4 0 3 2.95930E-1 4.02948E-3 2.86971E-1 3.04888E-1 

Table 31. The descriptive statistics, μi, σi and, with α = 0.05 (Equation 98), the 95% confidence 
interval about μi, ±Îa¢ , determined using the standard error of the mean, �a¢  (Equation 97). In 
turn, the standard error of the mean was determined using eMSw (Table 30). Each statistic in this 
table applies to just one treatment group at tϵ = t36 only. 
 

Pi ni Pj nj Δμij = μi – μj 
(Svedberg) 

�∆a¢O  
(Svedberg) 

-Î∆a¢O  
(Svedberg) 

+Î∆a¢O  
(Svedberg) 

pBonf 
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1.00 9 0.99 9 -1.36176E-3 2.49895E-3 -8.67649E-3 5.95296E-3 > 1 
1.00 9 0.50 3  4.05566E-1 3.53405E-3 3.95221E-1 4.15911E-1 < 1E-6 
1.00 9 0.00 3 7.05716E-1 3.53405E-3 6.95371E-1 7.16060E-1 < 1E-6 
0.99 9 0.50 3 4.06928E-1 3.53405E-3 3.96583E-1 4.17272E-1 < 1E-6 
0.99 9 0.00 3 7.07077E-1 3.53405E-3 6.96733E-1 7.17422E-1 < 1E-6 
0.50 3 0.00 3 3.00150E-1 4.32831E-3 2.87480E-1 3.12819E-1 < 1E-6 
Table 32. Comparative statistical parameters. Each statistic applies to just one pair-wise 
comparison between two treatment groups at tϵ = t36 only. Equation 95 gives the critical value, 
Dc[vA − 1], pvd − 1qf = ∆a¢O ë∆i¢O, for each pair-wise comparison. The probability obtained from the 
Bonferroni adjusted t-test (2-tailed) is pBonf. Less than (1 - α)100% confidence is accorded to the 
difference between any two means for which the comparison yields pBonf > α. The difference 
between μP=1.00 (identical to μi=1) and μP=0.99 (identical to μi=2) yields pBonf = q(pLSD) = 
6(0.59182), which is tabulated as pBonf > 1, as no real probability can exceed 1, and it is only by 
virtue of pLSD being greater than 1/q that pBonf = q(pLSD) > 1. Values of pBonf that lie below 1 –
 p(-5σ, 5σ) ≃ 1E-6 (Figure 2; Equation 26) are tabulated as pBonf < 1E-6. 
 
i P = Pi +Îac,c½ = +Îa¢,O  −Îac,c» = −Îa¢,O   i P = Pi −Îac,c½ = −Îa¢,O  +Îac,c» = +Îa¢,O  
1 1.00 +Îa¢·¸,O·´  −Îa¢·¸,O·�   1 1.00   
2 0.99 +Îa¢·´,O·@  −Îa¢·´,O·¸   2 0.99   
3 0.50    3 0.50 −Îa¢·@,O·�  +Îa¢·@,O·´  
4 0.00    4 0.00 −Îa¢·�,O·¸  +Îa¢·�,O·@  
Table 33a. For tϵ = t36, the identities of the �∆a¢O-based (1 - α)100% confidence interval about μi, 
which are expressed as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ , that are shown in 
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Figure 48. 
 
i P = Pi +Îac,c½  (s) −Îac,c»  (s)  i P = Pi −Îac,c½  (s) +Îac,c»  (s) 
1 1.00 1.00530E-13 9.96473E-14  1 1.00   
2 0.99 1.00818E-13 9.99350E-14  2 0.99   
3 0.50    3 0.50 5.89745E-14 6.01252E-14 
4 0.00    4 0.00 2.90757E-14 3.02264E-14 
Table 33b. For tϵ = t36, selected values of the �∆a¢O-based (1 - α)100% confidence interval about 
μi, which are expressed as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ . These are the 
confidence intervals presented graphically in Figure 48. Less than (1 - α)100% confidence is 
accorded to the difference between any two means with overlapping confidence intervals. By this 
measure, μP=1.00 (identical to μi=1) and μP=0.99 (identical to μi=2) are considered indistinguishable. 
 
j and nj apply to -Îa¢O  i and ni apply to both -Îa¢O  and +Îa¢O  j and nj apply to +Îa¢O  
j nj -Îa¢O  (s) μi (s) i Pi ni MA,e∗  (s) +Îa¢O  (s) j nj 
4 3 9.96473E-14 1.00165E-13 1 1.00 9 1.03097E-13 1.00530E-13 2 9 
1 9 9.99350E-14 1.00301E-13 2 0.99 9 1.03727E-13 1.00818E-13 3 3 
4 3 5.89745E-14 5.96079E-14 3 0.50 3 6.22135E-14 6.01252E-14 2 9 
1 9 2.90757E-14 2.95930E-14 4 0.00 3 2.81395E-14 3.02264E-14 3 3 
Table 33c. For tϵ = t36, the known expectation value, MA,e∗ ; the mean, μi; and the �∆a¢O-based 
(1 - α)100% confidence interval about μi, −Îa¢,O  < μi < +Îa¢,O , shown in Figure 48. These 
parameters are plotted as a function of P in Figure 48. As noted with respect to Equations 104 
and 105, the deterministic expectation value, Ai, can only be equated to the known expectation 
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value, MA,e∗ , if Equation 86 holds. 
 

 
Figure 48a. For tϵ = t36, the known expectation value, Me,e∗  (), and the �∆a¢O-based (1 - α)100% 
confidence interval about μP, −Îac,c½  (⎯⎯⎯�) < μP (�) < +Îac,c»  (�⎯⎯⎯) or −Îac,c»  (�⎯⎯⎯) < μP 
(�) < +Îac,c½  (⎯⎯⎯�) within 0.50 ≤ P ≤ 1.00. Where Equation 86 holds, AP (Equations 104 and 
105) is identical to Me,e∗  (Equation 81b) at tϵ = t36. The confidence intervals shown here are 
tabulated in Table 33. Less than (1 - α)100% confidence is accorded to the difference between 
any two means with overlapping confidence intervals. By this measure, μP=1.00 (identical to μi=1) 
and μP=0.99 (identical to μi=2) are considered indistinguishable. 
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Figure 48b. For tϵ = t36, the known expectation value, Me,e∗  (), and the �∆a¢O-based (1 - α)100% 
confidence interval about μP, −Îac,c½  (⎯⎯⎯�) < μP (�) < +Îac,c»  (�⎯⎯⎯) or −Îac,c»  (�⎯⎯⎯) < μP 
(�) < +Îac,c½  (⎯⎯⎯�), as a function of P within 0.00 ≤ P ≤ 0.50. Where Equation 86 holds, AP 
(Equations 104 and 105) is identical to Me,e∗  (Equation 81b) at tϵ = t36. The confidence intervals 
shown here are tabulated in Table 33. 
 
Statistical analysis of AUC simulation results for t51 
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The statistical analysis of the data for t51 in Tables 24 to 27 yielded the results presented in 
Tables 34 to 37. Table 34 collects statistical parameters that apply to all treatment groups at tϵ = 
t51. Table 35 lists descriptive statistical parameters that apply to each treatment group at tϵ = t51. 
Table 36 lists the comparative statistical parameters that apply to the (1 - α)100% confidence 
interval about each pair-wise mean difference, Δμij (Equation 96), between treatment groups at tϵ 
= t51. Table 37 lists the comparative statistical parameters that constitute the �∆a¢O-based 
(1 - α)100% confidence interval about the mean, μi, of each treatment group at tϵ = t51. Figure 49 
shows, as a function of P, the �∆a¢O-based (1 - α)100% confidence interval about the mean, either 
as −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½  (Table 37), along with the known expectation 
value, Me,e∗  (Equation 81b), at tϵ = t51. Where Equation 86 holds, AP (Equations 104 and 105) is 
identical to Me,e∗  at tϵ = t51.  
 
Table 36 gives the value of the Bonferroni adjusted t-test (2-tailed), pBonf, for each pair-wise 
mean difference, Δμij at tϵ = t51. Less than (1 - α)100% confidence is accorded to the difference 
between any two means for which the comparison yields pBonf > α, and by this measure, with α = 
0.05, each mean value, μP (identical to μi), is considered distinguishable from every other mean 
value, as each pair-wise comparison yields pBonf < α. Likewise, in Table 37 and in Figure 49, less 
than (1 - α)100% confidence is accorded to the difference between any two means with 
overlapping confidence intervals, and by this measure as well, each mean value is considered 
distinguishable from every other mean value. 
 
Equation statistic value 87 raw sum Atot -1.93544E-12 s 

88 raw sum of squares Asq 1.70003E-25 s2 
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89 mean of the raw sum squared μsq 1.56080E-25 s2 
90 correction term of the mean μcorr 1.69893E-25 s2 
91 mean square error within groups eMSw 5.47537E-30 s2 
92 mean of the sum of squares of treatments TMSb 4.60440E-27 s2 

Table 34. Statistical parameters that apply to treatment groups 1 to 4 at tϵ = t51 only. The ratio of 
two of these statistics, TMSb and eMSw, yield F = TMSb/eMSw = 840.93. The results in this table are 
calculated using the replicate observations for t51, which are the sets of all Ai,h ≡ MA,B,�m∗  given in 
Tables 24 to 27. 
 
treatment group %KA > 0 replicates mean (Svedberg) standard deviation (Svedberg) 

�a¢-based (1 - α)100% confidence interval (Svedberg) i (Pi)100% ni μi = ÄMA,e∗ Å σi −Îa¢ +Îa¢ 
1 100 9 -6.42474E-1 1.05574E-2 -6.65306E-1 -6.19643E-1 
2 99 9 -6.95688E-1 2.16304E-2 -7.18519E-1 -6.72857E-1 
3 50 3 -1.17713 2.20316E-2 -1.21667 -1.13758 
4 0 3 -1.25985 5.16977E-2 -1.29939 -1.22030 

Table 35. The descriptive statistics, μi, σi and, with α = 0.05 (Equation 98), the 95% confidence 
interval about μi, ±Îa¢ , determined using the standard error of the mean, �a¢  (Equation 97). In 
turn, the standard error of the mean was determined using eMSw (Table 34). Each statistic in this 
table applies to just one treatment group at tϵ = t51 only. 
 

Pi ni Pj nj Δμij = μi – μj 
(Svedberg) 

�∆a¢O  
(Svedberg) 

-Î∆a¢O  
(Svedberg) 

+Î∆a¢O  
(Svedberg) 

pBonf 
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1.00 9 0.99 9 5.32139E-2 1.10306E-2 2.09259E-2 8.55019E-2 6.18454E-4 
1.00 9 0.50 3 5.34655E-1 1.55997E-2 4.88993E-1 5.80317E-1 < 1E-6 
1.00 9 0.00 3 6.17372E-1 1.55997E-2 5.71710E-1 6.63034E-1 < 1E-6 
0.99 9 0.50 3 4.81441E-1 1.55997E-2 4.35779E-1 5.27103E-1 < 1E-6 
0.99 9 0.00 3 5.64158E-1 1.55997E-2 5.18496E-1 6.09820E-1 < 1E-6 
0.50 3 0.00 3 8.27170E-2 1.91056E-2 2.67926E-2 1.38641E-1 1.95399E-3 
Table 36. Comparative statistical parameters. Each statistic applies to just one pair-wise 
comparison between two treatment groups at tϵ = t51 only. Equation 95 gives the critical value, 
Dc[vA − 1], pvd − 1qf = ∆a¢O ë∆i¢O, for each pair-wise comparison. The probability obtained from the 
Bonferroni adjusted t-test (2-tailed) is pBonf. Less than (1 - α)100% confidence is accorded to the 
difference between any two means for which the comparison yields pBonf > α. Values of pBonf that 
lie below 1 – p(-5σ, 5σ) ≃ 1E-6 (Figure 2; Equation 26) are tabulated as pBonf < 1E-6. 
 
i P = Pi +Îac,c½ = +Îa¢,O  −Îac,c» = −Îa¢,O   i P = Pi −Îac,c½ = −Îa¢,O  +Îac,c» = +Îa¢,O  
1 1.00    1 1.00 −Îa¢·¸,O·´  +Îa¢·¸,O·�  
2 0.99    2 0.99 −Îa¢·´,O·@  +Îa¢·´,O·¸  
3 0.50    3 0.50 −Îa¢·@,O·�  +Îa¢·@,O·´  
4 0.00    4 0.00 −Îa¢·�,O·¸  +Îa¢·�,O·@  
Table 37a. For tϵ = t51, the identities of the �∆a¢O-based (1 - α)100% confidence interval about μi, 
which are expressed as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ , that are shown in 
Figure 49. 
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i P = Pi +Îac,c½  (s) −Îac,c»  (s)  i P = Pi −Îac,c½  (s) +Îac,c»  (s) 
1 1.00    1 1.00 -6.58618E-14 -6.19643E-14 
2 0.99    2 0.99 -7.18519E-14 -6.79544E-14 
3 0.50    3 0.50 -1.20509E-13 -1.15430E-13 
4 0.00    4 0.00 -1.28268E-13 -1.23188E-13 
Table 37b. For tϵ = t51, selected values of the �∆a¢O-based (1 - α)100% confidence interval about 
μi, which are expressed as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ . These are the 
confidence intervals presented graphically in Figure 49. Less than (1 - α)100% confidence is 
accorded to the difference between any two means with overlapping confidence intervals. 
 
j and nj apply to -Îa¢O  i and ni apply to both -Îa¢O  and +Îa¢O  j and nj apply to +Îa¢O  
j nj -Îa¢O  (s) μi (s) i Pi ni MA,e∗  (s) +Îa¢O  (s) j nj 
2 9 -6.58618E-14 -6.42474E-14 1 1.00 9 -6.51551E-14 -6.19643E-14 4 3 
3 3 -7.18519E-14 -6.95688E-14 2 0.99 9 -7.08527E-14 -6.79544E-14 1 9 
4 3 -1.20509E-13 -1.17713E-13 3 0.50 3 -1.37829E-13 -1.15430E-13 2 9 
1 9 -1.28268E-13 -1.25985E-13 4 0.00 3 -1.78094E-13 -1.23188E-13 3 3 
Table 37c. For tϵ = t51, the known expectation value, MA,e∗ ; the mean, μi; and the �∆a¢O-based 
(1 - α)100% confidence interval about μi, −Îa¢,O  < μi < +Îa¢,O , shown in Figure 49. These 
parameters are plotted as a function of P in Figure 49. As noted with respect to Equations 104 
and 105, the deterministic expectation value, Ai, can only be equated to the known expectation 
value, MA,e∗ , if Equation 86 holds. 
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Figure 49. For tϵ = t51, the known expectation value, Me,e∗  (), and the �∆a¢O-based (1 - α)100% 
confidence interval about μP, −Îac,c½  (⎯⎯⎯�) < μP (�) < +Îac,c»  (�⎯⎯⎯). Where Equation 86 
holds, AP (Equations 104 and 105) is identical to Me,e∗  (Equation 81b) at tϵ = t51. The confidence 
intervals shown here are tabulated in Table 37. 
 
Statistical analysis of AUC simulation results for t66 
 
The statistical analysis of the data for t66 in Tables 24 to 27 yielded the results presented in 
Tables 38 to 41. Table 38 collects statistical parameters that apply to all treatment groups at tϵ = 
t66. Table 39 lists descriptive statistical parameters that apply to each treatment group at tϵ = t66. 
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Table 40 lists the comparative statistical parameters that apply to the (1 - α)100% confidence 
interval about each pair-wise mean difference, Δμij (Equation 96), between treatment groups at tϵ 
= t66. Table 41 lists the comparative statistical parameters that constitute the �∆a¢O-based 
(1 - α)100% confidence interval about the mean, μi, of each treatment group at tϵ = t66. Figure 50 
shows, as a function of P, the �∆a¢O-based (1 - α)100% confidence interval about the mean, either 
as −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½  (Table 41), along with the known expectation 
value, Me,e∗  (Equation 81b), at tϵ = t66. Where Equation 86 holds, AP (Equations 104 and 105) is 
identical to Me,e∗  at tϵ = t66.  
 
Table 40 gives the value of the Bonferroni adjusted t-test (2-tailed), pBonf, for each pair-wise 
mean difference, Δμij at tϵ = t66. Less than (1 - α)100% confidence is accorded to the difference 
between any two means for which the comparison yields pBonf > α, and by this measure, with α = 
0.05, μP=0.00 (identical to μi=4) and μP=0.50 (identical to μi=3) are considered indistinguishable, as 
their comparison yields pBonf = 1.55280E-1. Likewise, in Table 41 and in Figure 50, less than 
(1 - α)100% confidence is accorded to the difference between any two means with overlapping 
confidence intervals, and by this measure as well, μP=0.00 (identical to μi=4) and μP=0.50 (identical 
to μi=3) are considered indistinguishable. 
 
Equation statistic value 87 raw sum Atot 1.39596E-12 s 

88 raw sum of squares Asq 8.16790E-26 s2 
89 mean of the raw sum squared μsq 8.11958E-26 s2 
90 correction term of the mean μcorr 8.16410E-26 s2 
91 mean square error within groups eMSw 1.90127E-30 s2 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

225 

 

92 mean of the sum of squares of treatments TMSb 1.48404E-28 s2 
Table 38. Statistical parameters that apply to treatment groups 1 to 4 at tϵ = t66 only. The ratio of 
two of these statistics, TMSb and eMSw, yield F = TMSb/eMSw = 78.055. The results in this table are 
calculated using the replicate observations for t66, which are the sets of all Ai,h ≡ MA,B,NN∗  given in 
Tables 24 to 27. 
 
treatment group %KA > 0 replicates mean (Svedberg) standard deviation (Svedberg) 

�a¢-based (1 - α)100% confidence interval (Svedberg) i (Pi)100% ni μi = ÄMA,e∗ Å σi −Îa¢ +Îa¢ 
1 100 9 5.91476E-1 1.38295E-2 5.78023E-1 6.04930E-1 
2 99 9 6.18973E-1 1.41951E-2 6.05519E-1 6.32426E-1 
3 50 3 4.97375E-1 6.13183E-3 4.74073E-1 5.20677E-1 
4 0 3 5.24471E-1 1.71072E-2 5.01168E-1 5.47773E-1 

Table 39. The descriptive statistics, μi, σi and, with α = 0.05 (Equation 98), the 95% confidence 
interval about μi, ±Îa¢ , determined using the standard error of the mean, �a¢  (Equation 97). In 
turn, the standard error of the mean was determined using eMSw (Table 38). Each statistic in this 
table applies to just one treatment group at tϵ = t66 only. 
 

Pi ni Pj nj Δμij = μi – μj 
(Svedberg) 

�∆a¢O  
(Svedberg) 

-Î∆a¢O  
(Svedberg) 

+Î∆a¢O  
(Svedberg) 

pBonf 

1.00 9 0.99 9 -2.74964E-2 6.50003E-3 -4.65228E-2 -8.47004E-3 2.46370E-3 
1.00 9 0.50 3 9.41013E-2 9.19244E-3 6.71939E-2 1.21009E-1 < 1E-6 
1.00 9 0.00 3 6.70055E-2 9.19244E-3 4.00981E-2 9.39129E-2 < 1E-6 
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0.99 9 0.50 3 1.21598E-1 9.19244E-3 9.46903E-2 1.48505E-1 < 1E-6 
0.99 9 0.00 3 9.45019E-2 9.19244E-3 6.75946E-2 1.21409E-1 < 1E-6 
0.50 3 0.00 3 -2.70958E-2 1.12584E-2 -6.00504E-2 5.85886E-3 1.55280E-1 
Table 40. Comparative statistical parameters. Each statistic applies to just one pair-wise 
comparison between two treatment groups at tϵ = t66 only. Equation 95 gives the critical value, 
Dc[vA − 1], pvd − 1qf = ∆a¢O ë∆i¢O, for each pair-wise comparison. The probability obtained from the 
Bonferroni adjusted t-test (2-tailed) is pBonf. Less than (1 - α)100% confidence is accorded to the 
difference between any two means for which the comparison yields pBonf > α. Values of pBonf that 
lie below 1 – p(-5σ, 5σ) ≃ 1E-6 (Figure 2; Equation 26) are tabulated as pBonf < 1E-6. By this 
measure, μP=0.00 (identical to μi=4) and μP=0.50 (identical to μi=3) are considered indistinguishable. 
 
i P = Pi +Îac,c½ = +Îa¢,O  −Îac,c» = −Îa¢,O   i P = Pi −Îac,c½ = −Îa¢,O  +Îac,c» = +Îa¢,O  
1 1.00 +Îa¢·¸,O·´  −Îa¢·¸,O·�   1 1.00   
2 0.99 +Îa¢·´,O·@  −Îa¢·´,O·¸   2 0.99   
3 0.50 +Îa¢·@,O·�  −Îa¢·@,O·´   3 0.50   
4 0.00 +Îa¢·�,O·¸  −Îa¢·�,O·@   4 0.00   
Table 41a. For tϵ = t66, the identities of the �∆a¢O-based (1 - α)100% confidence interval about μi, 
which are expressed as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ , that are shown in 
Figure 50. 
 
i P = Pi +Îac,c½  (s) −Îac,c»  (s)  i P = Pi −Îac,c½  (s) +Îac,c»  (s) 
1 1.00 6.00990E-14 5.78023E-14  1 1.00   
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2 0.99 6.32426E-14 6.09460E-14  2 0.99   
3 0.50 5.13852E-14 4.83921E-14  3 0.50   
4 0.00 5.37925E-14 5.07994E-14  4 0.00   
Table 41b. For tϵ = t66, selected values of the �∆a¢O-based (1 - α)100% confidence interval about 
μi, which are expressed as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ . These are the 
confidence intervals presented graphically in Figure 50. Less than (1 - α)100% confidence is 
accorded to the difference between any two means with overlapping confidence intervals. By this 
measure, μP=0.00 (identical to μi=4) and μP=0.50 (identical to μi=3) are considered indistinguishable. 
 
j and nj apply to -Îa¢O  i and ni apply to both -Îa¢O  and +Îa¢O  j and nj apply to +Îa¢O  
j nj -Îa¢O  (s) μi (s) i Pi ni MA,e∗  (s) +Îa¢O  (s) j nj 
4 3 5.78023E-14 5.91476E-14 1 1.00 9 5.69770E-14 6.00990E-14 2 9 
1 9 6.09460E-14 6.18973E-14 2 0.99 9 5.97635E-14 6.32426E-14 3 3 
2 3 4.83921E-14 4.97375E-14 3 0.50 3 4.25702E-14 5.13852E-14 4 3 
3 3 5.07994E-14 5.24471E-14 4 0.00 3 3.37342E-14 5.37925E-14 1 9 
Table 41c. For tϵ = t66, the known expectation value, MA,e∗ ; the mean, μi; and the �∆a¢O-based 
(1 - α)100% confidence interval about μi, −Îa¢,O  < μi < +Îa¢,O , shown in Figure 50. These 
parameters are plotted as a function of P in Figure 50. As noted with respect to Equations 104 
and 105, the deterministic expectation value, Ai, can only be equated to the known expectation 
value, MA,e∗ , if Equation 86 holds. 
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Figure 50. For tϵ = t66, the known expectation value, Me,e∗  (), and the �∆a¢O-based (1 - α)100% 
confidence interval about μP, −Îac,c»  (�⎯⎯⎯) < μP (�) < +Îac,c½  (⎯⎯⎯�). Where Equation 86 
holds, AP (Equations 104 and 105) is identical to Me,e∗  (Equation 81b) at tϵ = t66. The confidence 
intervals shown here are tabulated in Table 41. Less than (1 - α)100% confidence is accorded to 
the difference between any two means with overlapping confidence intervals. By this measure, 
μP=0.00 (identical to μi=4) and μP=0.50 (identical to μi=3) are considered indistinguishable. 
 
Regarding the statistical analysis of AUC simulation results for t36, t51 and t66 
 
An underlying assumption of the statistical analysis just presented was that the observations fit a 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

229 

 

model given by ÑA,B = Ò + ∆ÒA + �A,B  (Equation 86), where µ is the grand mean, Δµi is the 
deviation of the mean of treatment group i from the grand mean (∆ÒA = ÒA − Ò), and ei,h is the 
residual that, as the random component of each observation, must be normally distributed 
(Equation 24) about Ò + ∆ÒA with a standard deviation that does not vary from one treatment 
group to another. In the limit as the number of replicates in each treatment group approaches 
infinity, the deterministic component, µ + Δµi, of each observation should approach the known 
expectation value, MA,e∗  (Equation 81b), for each treatment group, provided that the data strictly 
conform to the model described by Equation 86.  
 
Regardless of whether Equation 86 holds, in the limiting case of virtually infinite replicates 
within each treatment group, the deterministic expectation value, Ai (Equations 104 and 105), 
can be equated to µ + Δµi. Where Equation 86 also holds, Ai at time tϵ can be equated to MA,e∗ . 
Doubt is cast on the validity of comparisons between the treatment groups for which Ai at time tϵ 
cannot be equated to MA,e∗ . The results (Tables 24 to 27; Tables 33, 37 and 41; Figures 44 to 50) 
provide evidence of there being systematic noise present in the observations, in which case, Ai,h – 
(µ + Δµi) would not equal ei,h as defined for Equation 86, and Ai at time tϵ could not be equated to 
MA,e∗ , although for the two most similar treatment groups, Pi=2 = 0.99 and Pi=1 = 1.00, equating Ai 
at time t51 to MA,�m∗  would yield values of AP=0.99 and AP=1.00 that lie within the confidence intervals 
about the mean for their respective treatment groups, such that −Îac·;.jj,c·;.Q; < AP=0.99 < 
+Îac·;.jj,c·¸.;; , and −Îac·¸.;;,c·;.jj < AP=1.00 < +Îac·¸.;;,c·;.;; . Thus, for treatment groups Pi=2 = 
0.99 and Pi=1 = 1.00 at time t51, Ai,h – (µ + Δµi) values may closely approach ei,h as defined. 
 
Only in the cases of treatment groups Pi=2 = 0.99 and Pi=1 = 1.00 at time t51 (Table 37; Figure 49) 
would equating Ai to MA,e∗  place AP within the confidence interval about μP. Of all the other cases 
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(Tables 33, 37 and 41; Figures 48 to 50), the next closest are for treatment groups Pi=2 = 0.99 
and Pi=1 = 1.00 at time t66 (Table 41; Figure 50), in which equating Ai to MA,e∗  place AP just below 
the confidence interval about μP. By this measure, the comparisons between treatment groups 
Pi=2 = 0.99 and Pi=1 = 1.00 at times t51 and t66 might be thought the first and second most 
convincing, respectively. In both of those comparisons, there is no overlap between the 
confidence intervals about the mean values (Tables 37 and 41; Figures 49 and 50).  
 
Greater than p(-3σ, 3σ)100% ≃ 99.73% confidence (Figure 2; Equation 26) can be accorded to 
the difference between μP=0.99 and μP=1.00, for which (1 - pBonf) = 0.99754 at t66 (Table 40), and 
(1 - pBonf) = 0.99938 at t51 (Table 36). Graphically, the confidence intervals of μP=0.99 and μP=1.00 at 
t66 would still not overlap at (1 - α) = 0.99754, and the confidence intervals of μP=0.99 and μP=1.00 
at t51 would still not overlap at (1 - α) = 0.99938. Thus, even if 0.0025 were chosen for α, μP=0.99 
and μP=1.00 would still pass the distinguishability test at times t51 and t66. This, coupled with the 
relative nearness of the expectation values to μP for treatment groups Pi=2 = 0.99 and Pi=1 = 1.00 
at t51 and t66, can be taken as evidence that, given enough replicates and a large enough difference 
between the expectation values of the observations for the different treatment groups at one or 
more of the times chosen for analysis, suitable methods of AUC can be used to distinguish some 
systems that differ in composition by as little as 1% (volume percent). 
 
As previously discussed (The signal-to-noise ratio of ²A,BcMNO∗ f worsens in proportion to 
1 �t¤¥O∗ ³´�OÂ  as MNO∗  increases; The accumulated error in KA,BcMNOlt�∗ f increases in proportion to 
the clipping of random noise; The accumulated error in ÄMA,e∗ Å increases in proportion to the 
clipping of random noise), GRNi,h(rj,tα), makes the least systematic contribution to MA,B,e∗  when, in 
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going from w§¡¢,£c¤¥O∗ f§¤¥O∗ y� to ©A,BcMNO∗ f, the clipping of the positively signed and the negatively signed 
random noise is minimised (Figures 24 to 27). The less comprehensive such minimisation, the 
more MA,e∗  will differ from µi at any given time (Tables 24 to 27; Tables 33, 37 and 41; Figures 44 to 
50). Even where the clipping of positively signed random noise within -ÆM¿∗Æ < MNO∗  < -ÆMÇ∗Æ is 
complemented by the clipping of negatively signed random noise within ÆM¿∗Æ < MNO∗  < ÆMÇ∗Æ, the 
remaining random noise will be imbalanced in such a way that MA,B,e∗  accumulates systematic 
noise. 
 
The results for treatment groups 1 and 2 (Tables 24 and 25; Tables 37 and 41; Figures 44 and 45; 
Figures 49 and 50) show that the accumulation of systematic noise from data clipping can be 
minimised by excluding, through the judicious selection of M�Ak¾x∗ , M�¿À¾x∗ , M�AkÁx∗  and M�¿ÀÁx∗ , 
regions of low signal-to-noise from the ranges of MNO∗  used to calculate MA,B,e∗  (Equation13). In 
contrast, the results for treatment groups 3 and 4 (Tables 26 and 27; Figures 46 and 47) show 
that the accumulation of systematic noise from data clipping can be readily observed when large 
regions of low signal-to-noise are present within the ranges of MNO∗  used to calculate MA,B,e∗ . 
 
The process by which data clipping becomes a source of systematic noise is most easily shown 
through an example in which the noise-free signal, NFSi(rj,tϵ), is equal to zero at all radial 
positions and times, and where M�Ak¾x∗  = MNOlm∗ , M�¿À¾x∗  = 0, M�AkÁx∗  = 0 and M�¿ÀÁx∗  = MNOlt�∗  are 
the limits applied to the integrals that yield KA,BcMNOlt�∗ f (Equation 77) and MA,B,e∗ cMNOlm∗ , MNOlt�∗ f 
(Equation 81a). Before presenting such an example (Analysis of data for which the noise-free 
signal is always zero everywhere), some background information, in which consideration is given 
to more general cases in which the observations can deviate from the model represented by 
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Equation 86 (Deviation of the observations from the model represented by Equation 86), is 
presented. 
 
Deviation of the observations from the model represented by Equation 86 
 
To equate an observation, MA,B,e∗ cMNOlm∗ , MNOlt�∗ f, to Ai,h of Equation 86, all such observations, which 
are those resulting from the analysis of data obtained at the same time, tϵ, must fit the model 
represented by ÑA,B = Ò + ∆ÒA + �A,B , where ei,h is the random component of each observation, 
and as such, ei,h must be normally distributed (Equation 24) about Ò + ∆ÒA with a standard 
deviation that does not vary from one treatment group to another. 
 
Where the primary data are fully described by Equation 1b,>?@A,BcCd, Def = >F@AcCd , Def +
HI>A,BcCdf + JI>A,B(De) + KJ>A,BcCd, Def, of which the total noise is given by >A,BcCd, Def =
HI>A,BcCdf + JI>A,B(De) + KJ>A,BcCd, Def. By definition (Figure 5), the generally random noise, 
GRN(rj, tϵ), is normally distributed with a standard deviation approaching σRI = 0.01400 fringe 
about a mean value approaching μRI = 0 fringe.  
 
For radial position rj of replicate h of treatment group i, Equation 7 gives the difference between 
two signals separated by time as �A,BcCd , Def = >?@A,BcCd, Def − >?@A,BcCd, D�f, where 
>?@A,BcCd, D�f = >F@AcCd , D�f + HI>A,BcCdf + JI>A,B(D�) + KJ>A,BcCd, D�f. At each radial position, 
the difference in the time-independent noise is 

∆HI>A,BcCdf = HI>A,BcCdf − HI>A,BcCdf = 0, 
(107) 
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and the difference in the radially independent noise, 
∆JI>A,B(De) = JI>A,B(De) − JI>A,B(D�) = nA,B,e , 

(108) 
is equal to a radially independent offset, ki,h,ϵ, that contributes zero when differentiated with 
respect to either rj or MNO∗  at time tϵ. As both GRNi,h(rj,tα) and GRNi,h(rj,tϵ) are randomly distributed 
with respect to rj, neither GRNi,h(rj,tα) nor GRNi,h(rj,tϵ) makes any systematic contribution to 
Yi,h(rj,tϵ). Rather, their contribution to Yi,h(rj,tϵ) consists of the difference,  

∆KJ>A,BcCd , Def = KJ>A,BcCd, Def − KJ>A,BcCd , D�f 
(109) 
that, with respect to rj, is found to be randomly distributed with a standard deviation 
approximately 20.5 times that of either GRNi,h(rj,tα) or GRNi,h(rj,tϵ). (The standard deviation of 
such approximated differences is discussed in Mitigation of data clipping.) Consequently, the 
randomly distributed noise of Yi,h(rj,tϵ) is normally distributed with a standard deviation 
approaching 20.5σRI = 1.97990E-2 fringe about a mean value approaching μRI = 0 fringe. Other 
than the radially independent offset, ΔRINi,h(tϵ) = ki,h,ϵ, the only systematic part of Yi,h(rj,tϵ) is the 
difference in the noise-free signal, 

∆>F@AcCd , Def = >F@AcCd, Def − >F@AcCd , D�f, 
(110) 
which, at over 90% of all radial positions (Table 13b), consists of NFSi(rj,tϵ) minus a radially 
independent offset, with the exceptions limited to radial positions so close to the extrema that 
they are excluded from analysis. (Table 13b gives the values of RINi,h(t1), which are equated to 
-NFSi(r450,t1), where t1 = tα.) Using Equations 107 to 110, Equation 7 can be rewritten as 

�A,BcCd, Def = ∆>F@AcCd, Def + ∆HI>A,BcCdf + ∆JI>A,B(De) + ∆KJ>A,BcCd, Def
= ∆>F@AcCd , Def + 0 + nA,B,e + ∆KJ>A,BcCd, Def. 
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(111a) 
The signal difference, Yi,h(rj,tϵ), is remapped from Yi,h(rj,tϵ) versus rj to Yi,h(MNO∗ ) versus MNO∗ , where 
MNO∗  is calculated from rj and tϵ using Equation 5. In the process, the difference in the time-
independent noise is remapped from ΔTINi,h(rj) = 0 versus rj to ΔTINi,h(MNO∗ ) = 0 versus MNO∗ , the 
difference in the radially independent noise is remapped from ΔRINi,h(tϵ) = ki,h,ϵ versus rj to 
ΔRINi,h(MNO∗ ) = ki,h,ϵ versus MNO∗ , the difference in the noise-free signal is remapped from 
ΔNFSi(rj,tϵ) versus rj to ΔNFSi(MNO∗ ) versus MNO∗ , and the difference in the randomly distributed 
noise is remapped from ΔGRNi,h(rj,tϵ) versus rj to ΔGRNi,h(MNO∗ ) versus MNO∗ . Thus, 

�A,BcMNO∗ f = ∆>F@AcMNO∗ f + ∆HI>A,BcMNO∗ f + ∆JI>A,BcMNO∗ f + ∆KJ>A,BcMNO∗ f
= ∆>F@AcMNO∗ f + 0 + nA,B,e + ∆KJ>A,BcMNO∗ f. 

(111b) 
As with ΔGRNi,h(rj,tϵ), ΔGRNi,h(MNO∗ ) is normally distributed with a standard deviation approaching 
20.5σRI = 1.197990E-2 fringe about a mean value approaching μRI = 0 fringe. 
 
Systemic noise arising from ΔGRNi,h(MNO∗ ) has its first source in the derivative, w§¡¢,£c¤¥O∗ f§¤¥O∗ y�. The 
approximation used to evaluate the partial derivative of Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ is 
given by Equation 8, of which the part that applies to ΔGRNi,h(MNO∗ ) is given by 

��∆KJ>A,BcMNO∗ f�MNO∗ �� ≅ 12 �∆KJ>A,BcMNO∗ f − ∆KJ>A,BcMNO�m∗ fMNO∗ − MNO�m∗ + ∆KJ>A,BcMNO�m∗ f − ∆KJ>A,BcMNO∗ fMNO�m∗ − MNO∗ �
≡ ∆∆KJ>A,BcMNO∗ f∆MNO∗  

(112a) 
at φϵ within 1 < φϵ < 2N, 
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��∆KJ>A,BcMNOlm∗ f�MNO∗ �� ≅ ∆KJ>A,BcMNO�m∗ f − ∆KJ>A,BcMNO∗ fMNO�m∗ − MNO∗ ≡ ∆∆KJ>A,BcMNOlm∗ f∆MNOlm∗  
(112b) 
at φϵ = 1, and  

��∆KJ>cMNOlt�∗ f�MNO∗ �� ≅ ∆KJ>cMNO∗ f − ∆KJ>A,BcMNO�m∗ fMNO∗ − MNO�m∗ ≡ ∆∆KJ>A,BcMNOlt�∗ f∆MNOlt�∗  
(112c) 
at φϵ = 2N. 
 
With w§∆'k�¢,£c¤¥O∗ f§¤¥O∗ y� approximated by ∆∆'k�¢,£c¤¥O∗ f∆¤¥O∗  or its equivalents at φϵ = 1 and φϵ = 2N 
(Equation 112), ∆MNO∗  must be constant with φϵ to keep the standard deviation of ∆∆'k�¢,£c¤¥O∗ f∆¤¥O∗  
constant with φϵ. The spacing between MNO∗  values determines ∆MNO∗ , and MNO∗ = m³´�O uv ¦êOê;¨ 
(Equations 5 and 6), where ϵ is the index applied to time, and where, with 1 ≤ j ≤ N, φϵ = j when 
r0 is equal to the outermost radial extremum, rb, while φϵ = N + j when r0 is equal to the 
innermost radial extremum, rm. Thus, the spacing between MNO∗  values depends on both tϵ and the 
spacing between rj values. 
 
As will be shown (Equations 113 to 117), 1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj, where Δrj is the 
average distance between adjacent radial positions about rj. Furthermore, as implemented here, 
Δrj decreases as j increases (Equation 113). Figure 51 shows the effects of 1/∆MNO∗  being 
proportional to tϵrj/Δrj, where Δrj decreases as j increases. 
 
To keep the standard deviation of ∆∆'k�¢,£c¤¥O∗ f∆¤¥O∗  constant with φϵ, ∆MNO∗  would have to be kept 
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constant with φϵ, and to keep ∆MNO∗  constant with φϵ, the total number of rj values and the spacing 
between adjacent rj values would have to change with time in a facilitating manner (Changing N 
and rj values to keep ∆MNO∗  constant), but even if that were done, it would still result in an MNO∗ -
dependent the signal-to-noise ratio of ë´l¥O∗ m´nO∆¤¥O∗  , albeit with ∆MNO∗  constant (compare with Figure 
51), once ©A,BcMNO∗ f is multiplied by �t¤¥O∗ ³´�O  to render the product, ²A,BcMNO∗ f, hypothetically 
normalised for the effects of radial dilution or radial concentration. Nor would keeping ∆MNO∗  
constant with φϵ reduce the occurrence of data clipping, which is more problematic than an MNO∗  
dependence in the signal-to-noise ratio. Instead, it is simpler and more practical to edit the data 
such that Yi,h(MNO∗ ) is set to zero wherever its value is likely to be dominated by ΔGRNi,h(MNO∗ ), 
thereby preventing most instances of data clipping. One such editing method will be described 
(Mitigation of data clipping) after covering other faults found with the method employed in this 
work. 
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Figure 51. The full range of 1/cMNO�m∗ − MNO∗ f versus MNO∗  at t36 (⎯⎯⎯), t51 (⎯⎯⎯) and t66 (⎯⎯⎯), where 
cMNO�m∗ − MNO∗ f is equal to one of the ∆MNO∗  terms of Equations 8 and 112. The other ∆MNO∗  term of 
Equations 8 and 112, cMNO∗ − MNO�m∗ f, if used in place of cMNO�m∗ − MNO∗ f to plot 1/∆MNO∗  versus MNO∗ , 
would yield indistinguishable results at the scales shown in this figure. Equation 117 states that 
1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj, where Δrj is the average distance between adjacent radial 
positions about rj. In a further complication, as implemented here, Δrj decreases as j increases 
(Equation 113). 
 
Why Δrj decreases as j increases 
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For all the simulated AUC data in this study, Cd = é2�d  (Equation 32) and �d = �� + (| − 0.5)Δ� 
(Equation 31), where 1 ≤ j ≤ N, ξj = rj2/2 is the gravitational-potential-spatial element indexed 
by j, ξm = rm2/2 is the gravitational-potential-spatial position of the meniscus, and Δξ = 
[ξj+1 - ξj-1]/2 is constant at 8.8E-3 cm2 with j. As Δξ is constant with j, the average distance 
between adjacent radial positions,  

∆Cd = cCd�m − Cdf + cCd − Cd�mf2 = Cd�m − Cd�m2 , 
(113a) 
decreases as j increases. When applying Equation 113 to Δr1, rj-1 could be calculated as é2�x 
(Equation 32), where �x ≡ �� + (0 − 0.5)Δ� (Equation 31). When applying Equation 113 to ΔrN, 
rN+1 could be calculated as é2���m (Equation 32), where ���m ≡ �� + (> + 1 − 0.5)Δ� (Equation 
31). Here, however, Δr1 and ΔrN are treated as special cases in which 

∆Cm = Ct − Cm ≅ 0.00146631 hË 
(113b) 
and 

∆C� = C� − C��m ≅ 0.0012224 hË, 
(113c)  
respectively. 
 
Why 1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj 
 
Either the partial derivative of rj with respect to MNO∗  or the partial derivative of MNO∗  with respect to 
rj can be used to obtain an equation that describes 1/∆MNO∗  as a function of MNO∗ . Equation 5, which 
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describes MNO∗  as a function of tϵ and rj, yields w§¤¥O∗
§êO y� when differentiated with respect to rj at 

constant time, and Equation 6 can be used to apply the appropriate values of r0 and j for a given 
value of φϵ. To evaluate w §êO§¤¥O∗ y� requires an expression of rj as a function of tϵ and MNO∗ . Solving 
Equation 5 for rj results in,  

Cd = Cx�¤¥O∗ ³´�O , 
(114)  
where, in correspondence with Equation 6, 

Cx = { C� }~C ze = |C� }~C ze = | + >�  �v Cd = Cx�¤¥O∗ ³´�O . 
 (115) 
Equation 114, which describes rj as a function of tϵ and MNO∗ , yields w §êO§¤¥O∗ y�  when differentiated 
with respect to MNO∗  at constant time, and Equation 115 can be used to apply the appropriate 
values of r0 and φϵ for a given value of j.  
 
As the set of rj values is finite, the set of MNO∗  values is finite at each time, tϵ. Thus, any partial 
derivative with respect to rj or MNO∗  must be approximated if it cannot be evaluated analytically. At 
φϵ within 1 < φϵ < 2N and j within 1 < j < N, the analytical solution and the approximation used 
to evaluate the partial derivative of rj with respect to MNO∗  at time tϵ are given by 

� �Cd�MNO∗ �� = Cx ���¤¥O∗ ³´�O�MNO∗ �� = cCx�¤¥O∗ ³´�OfstDe = CdstDe ≅ 12 � Cd − Cd�mMNO∗ − MNO�m∗ + Cd�m − CdMNO�m∗ − MNO∗ �
= 12 þ�¤¥O∗ ³´�O − �¤¥O½¸∗ ³´�OMNO∗ − MNO�m∗ + �¤¥O»¸∗ ³´�O − �¤¥O∗ ³´�OMNO�m∗ − MNO∗ � Cx ≡ ∆Cd∆MNO∗ , 

(116a1) 
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while the analytical solution and the approximation used to evaluate the partial derivative of MNO∗  
with respect to rj at time tϵ are given by 
��MNO∗�Cd �� = 1stDe o�uv ¦CdCx¨�Cd p

�
= 1CdstDe ≅ 12 �MNO∗ − MNO�m∗Cd − Cd�m + MNO�m∗ − MNO∗Cd�m − Cd �

= 12 Fuv ¦CdCx¨ − uv ¦Cd�mCx ¨Cd − Cd�m + uv ¦Cd�mCx ¨ − uv ¦CdCx¨Cd�m − Cd G 1stDe = 12 Fuv w CdCd�my
Cd − Cd�m + uv wCd�mCd y

Cd�m − Cd G 1stDe

≡ ∆MNO∗∆Cd . 
(116a2) 
Equations 116a1 and 116a2 each yield the inverse of the other, as can be seen by expressing MNO∗  
in terms of rj in Equation 116a1, or by expressing rj in terms of MNO∗  in Equation 116a2. 
 
At φϵ = 1 and j = 1, the analytical solution and the approximation used to evaluate the partial 
derivative of rj with respect to MNO∗  at time tϵ are given by 

��Cdlm�MNO∗ �� = C� ���¤¥O∗ ³´�O�MNO∗ �� = cC��¤∗̧³´�OfstDe = CmstDe ≅ �Ct − CmMt∗ − Mm∗� = ��¤∗́³´�O − �¤∗̧³´�OMt∗ − Mm∗ � C�

≡ ∆Cdlm∆MNOlm∗ , 
(116b1) 
while the analytical solution and the approximation used to evaluate the partial derivative of MNO∗  
with respect to rj at time tϵ are given by 
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��MNOlm∗�Cd �� = 1stDe o�uv ¦CdC�¨�Cd p
�

= 1CdlmstDe ≅ ôMt∗ − Mm∗Ct − Cm õ = 12 �uv ¦CtC�¨ − uv ¦CmC�¨Ct − Cm � 1stDe

= �uv ¦CtCm¨Ct − Cm� 1stDe ≡ ∆MNOlm∗∆Cdlm . 
(116b2) 
Equations 116b1 and 116b2 each yield the inverse of the other, as can be seen by expressing MNO∗  
in terms of rj in Equation 116b1, or by expressing rj in terms of MNO∗  in Equation 116b2. 
 
At φϵ = 2N and j = N, the analytical solution and the approximation used to evaluate the partial 
derivative of rj with respect to MNO∗  at time tϵ are given by 

��Cdl��MNO∗ �� = C� ���¤¥O∗ ³´�O�MNO∗ �� = cC��¤´Z∗ ³´�OfstDe = C�stDe ≅ � C� − C��mMt�∗ − Mt��m∗ �
= ��¤´Z∗ ³´�O − �¤´Z½¸∗ ³´�OMt�∗ − Mt��m∗ � C� ≡ ∆Cdl�∆MNOlt�∗ , 

(116c1) 
while the analytical solution and the approximation used to evaluate the partial derivative of MNO∗  
with respect to rj at time tϵ are given by 

��MNOlt�∗�Cd �� = 1stDe o�uv ¦ CdC�¨�Cd p
�

= 1C�stDe ≅ ôMt�∗ − Mt��m∗C� − C��m õ = 12 �uv ¦C�C�¨ − uv ¦C��mC� ¨C� − C��m � 1stDe

= � uv ¦ C�C��m¨Cdl� − C��m� 1stDe ≡ ∆MNOlt�∗∆Cdl� . 
(116c2) 
Equations 116c1 and 116c2 each yield the inverse of the other, as can be seen by expressing MNO∗  
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in terms of rj in Equation 116c1, or by expressing rj in terms of MNO∗  in Equation 116c2. 
 
At φϵ = 1 + N and j = 1, the analytical solution and the approximation used to evaluate the partial 
derivative of rj with respect to MNO∗  at time tϵ are given by 

��Cdlm�MNO∗ �� = C� ���¤¥O∗ ³´�O�MNO∗ �� = cC��¤¸»Z∗ ³´�OfstDe = CmstDe ≅ � Ct − CdMt��∗ − Mm��∗ �
= ��¤´»Z∗ ³´�O − �¤¸»Z∗ ³´�OMt��∗ − Mm��∗ � C� ≡ ∆Cdlm∆MNOlm��∗ , 

(116d1) 
while the analytical solution and the approximation used to evaluate the partial derivative of MNO∗  
with respect to rj at time tϵ are given by 

��MNOlm��∗�Cd �� = 1stDe o�uv ¦ CdC�¨�Cd p
�

= 1CmstDe ≅ ôMt��∗ − Mm��∗Ct − Cm õ = 12 �uv ¦CtC�¨ − uv ¦ CmC�¨Ct − Cm � 1stDe

= �uv ¦CtCm¨Ct − Cm� 1stDe ≡ ∆MNOlm∗∆Cdlm . 
(116d2) 
Equations 116d1 and 116d2 each yield the inverse of the other, as can be seen by expressing MNO∗  
in terms of rj in Equation 116d1, or by expressing rj in terms of MNO∗  in Equation 116d2. 
Furthermore, Equations 116b2 and 116d2 yield identical results, as information about r0 is lost 
upon partial differentiation, at constant time, of MNO∗  with respect to rj. 
 
At φϵ = N and j = N, the analytical solution and the approximation used to evaluate the partial 
derivative of rj with respect to MNO∗  at time tϵ are given by 
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��Cdl��MNO∗ �� = C� ���¤¥O∗ ³´�O�MNO∗ �� = ¦C��¤¥O·Z∗ ³´�O¨ stDe = Cdl�stDe ≅ � C� − C��mMNOl�∗ − MNOl��m∗ �
= þ�¤¥O·Z∗ ³´�O − �¤¥O·Z½¸∗ ³´�OMNOl�∗ − MNOl��m∗ � C� ≡ ∆Cdl�∆MNOl�∗ , 

(116e1) 
while the analytical solution and the approximation used to evaluate the partial derivative of MNO∗  
with respect to rj at time tϵ are given by 

��MNOl�∗�Cd �� = 1stDe o�uv ¦CdC�¨�Cd p
�

= 1Cdl�stDe ≅ �MNOl�∗ − MNOl��m∗C� − C��m � = 12 �uv ¦C�C� ¨ − uv ¦C��mC� ¨C� − C��m � 1stDe

= �uv ¦ C�C��m¨C� − C��m� 1stDe ≡ ∆MNOl�∗∆Cdl� . 
(116e2) 
Equations 116e1 and 116e2 each yield the inverse of the other, as can be seen by expressing MNO∗  
in terms of rj in Equation 116e1, or by expressing rj in terms of MNO∗  in Equation 116e2. 
Furthermore, Equations 116c2 and 116e2 yield identical results, as information about r0 is lost 
upon partial differentiation, at constant time, of MNO∗  with respect to rj. 
 
Equation 116 shows that the analytical solutions, w§¤¥O∗

§êO y� = mêO³´�O and w §êO§¤¥O∗ y� = CdstDe , are each 
the inverse of the other. Equation 116 also shows that the approximate solutions,∆¤¥O∗

∆êO  and ∆êO∆¤¥O∗ , 
are each an alternative expression of the inverse of the other. Dividing the analytical solution for 
the partial derivative of rj with respect to MNO∗  at time tϵ, (Equation 116) by Δrj (Equation 113) 
yields 
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1∆MNOld∗ = 1∆MNOl��d∗ = � �Cd�MNO∗ ��
1∆Cd = CdstDe∆Cd = CdstDecCd�m − Cd�mf 2Â  

(117a) 
for 1 < j < N,  

1∆MNOlm∗ = 1∆MNOlm��∗ = ��Cdlm�MNO∗ ��
1∆Cdlm = CmstDe∆Cm = CmstDeCt − Cm 

(117b) 
for j = 1 and 

1∆MNOl�∗ = 1∆MNOlt�∗ = ��Cdl��MNO∗ ��
1∆Cdl� = C�stDe∆C� = C�stDeC� − C��m 

(117c) 
for j = N. 
 
Analysis of data for which the noise-free signal is always zero everywhere 
 
To illustrate how the method of data analysis can turn normally distributed noise in the noise-
modified signals, those being the sets of all NMSi,h(rj,tϵ), into systematic noise in the observations, 
those being the sets of all MA,B,e∗ cMNOlm∗ , MNOlt�∗ f, such analysis is applied to data that are devoid of a 
noise-free signal. The index value i = 0 is assigned to the treatment group for which the data that 
are devoid of a noise-free signal, and within treatment group i = 0, just one replicate, h = 1, is 
examined. Thus, at each radial position, rj, at each time, tϵ, NFSi(rj,tϵ) = 0 holds for any replicate of 
treatment group i = 0. With NFSi(rj,tϵ) = 0 at each radial position, rj, at each time, tϵ, Equation 8 
becomes identical to Equation 112, so that 

���A,BcMNO∗ f�MNO∗ �� = ��∆KJ>A,BcMNO∗ f�MNO∗ �� ≡ ∆∆KJ>A,BcMNO∗ f∆MNO∗  
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(118) 
for any replicate of treatment group i = 0. As, by Equation 8, w§¡¢,£c¤¥O∗ f§¤¥O∗ y� ≅ ∆¡¢,£c¤¥O∗ f∆¤¥O∗ , in the 
absence of a noise-free signal, ∆�A,BcMNO∗ f = ∆∆KJ>A,BcMNO∗ f. 
 
In what follows, several pairs of statistics, each consisting of a mean and a standard deviation of a 
parameter, arise frequently enough to warrant description. What is often of interest is whether 
the standard deviation of a parameter about its mean varies systematically from one narrow 
range of the spatially relevant independent variable to another at a given time, tϵ. Where the 
spatially relevant independent variable is the radial position, rj, the index j is convenient for 
defining each narrow range. Where the spatially relevant independent variable is the apparent 
sedimentation coefficient, MNO∗ , the index φϵ is convenient for defining each narrow range. 
 
With respect to the N radial positions, at time tϵ, for a sequence of contiguous ranges that each 
comprises an equal number of rj values, the standard deviation of a parameter about its mean 
within one narrow range, a < j < b, would be compared with the standard deviation of a 
parameter about its mean within the next narrow range, b < j < c, and the next narrow range, c < 
j < d, etcetera, where b - a = c - b = d - c << N - 1. With respect to the 2N apparent sedimentation 
coefficients, at time tϵ, for a sequence of contiguous ranges that each comprises an equal number 
of MNO∗  values, the standard deviation of a parameter about its mean within one narrow range, a < 
φϵ < b, would be compared with the standard deviation of a parameter about its mean within the 
next narrow range, b < φϵ < c, and the next narrow range, c < φϵ < d, etcetera, where b - a = c - b 
= d - c << 2N - 1.  
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Within ra to rb of replicate h of treatment group i at time tϵ, the mean of >?@A,BcCd , Def is given by 
Ä>?@A,B([C¿, C�], De)Å = 1q − r + 1 i >?@A,BcCd, Defdl�

dl¿ , 
(119a) 
and the standard deviation of >?@A,BcCd, Def about its mean, Ä>?@A,B([C¿, C�], De)Å, is given by  

ÔA,B ¦>?@A,B([C¿, C�], De)¨ = g 1q − r − 1 �ic>?@A,BcCd, Def  − Ä>?@A,B([C¿, C�], De)Åftdl�
dl¿ �hx.�, 

(119b) 
where 1 ≤ a < b ≤ 2N. Thus, at time tϵ, within the full range of rj values, ÔA,B ¦>?@A,B([Cm, C�], De)¨ 
is equal to the standard deviation about Ä>?@A,B([Cm, C�], De)Å, which is equal to the mean of all 
>?@A,BcCd, Def. 
 
Within ra to rb of replicate h of treatment group i at time tϵ, the mean of �A,BcCd , Def is given by 

Ä�A,B([C¿, C�], De)Å = 1q − r + 1 i �A,BcCd, Defdl�
dl¿ , 

(120a) 
and the standard deviation of �A,BcCd, Def about its mean, Ä�A,B([C¿, C�], De)Å, is given by  

ÔA,B ¦�A,B([C¿, C�], De)¨ = g 1q − r − 1 �ic�A,BcCd, Def  − Ä�A,B([C¿, C�], De)Åftdl�
dl¿ �hx.�, 

(120b) 
where 1 ≤ a < b ≤ 2N. Thus, at time tϵ, within the full range of rj values, ÔA,B ¦�A,B([Cm, C�], De)¨ is 
equal to the standard deviation about Ä�A,B([Cm, C�], De)Å, which is equal to the mean of all 
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�A,BcCd, Def. 
 
Within MNOl¿∗  to MNOl�∗  of replicate h of treatment group i at time tϵ, the mean of �A,BcMNO∗ f is given 
by 

Ä�A,BcpMNOl¿∗ , MNOl�∗ qfÅ = 1q − r + 1 i �A,BcMNO∗ fNOl�
NOl¿ , 

(121a) 
and the standard deviation of �A,BcMNO∗ f about its mean, Ä�A,BcpMNOl¿∗ , MNOl�∗ qfÅ, is given by  

ÔA,B ¦�A,BcpMNOl¿∗ , MNOl�∗ qf¨ = g 1q − r − 1 � i c�A,BcMNO∗ f  − Ä�A,BcpMNOl¿∗ , MNOl�∗ qfÅftNOl�
NOl¿ �hx.�, 

(121b) 
where 1 ≤ a < b ≤ 2N. Thus, at time tϵ, within the full range of MNO∗  values that apply at that time, 
ÔA,B ¦�A,BcpMNOlm∗ , MNOlt�∗ qf¨ is equal to the standard deviation about Ä�A,BcpMNOlm∗ , MNOlt�∗ qfÅ, which 
is equal to the mean of all �A,BcMNO∗ f. 
 
Within MNOl¿∗  to MNOl�∗  of replicate h of treatment group i at time tϵ, the mean of ∆�A,BcMNO∗ f ∆MNO∗	  is 
given by 

Ä∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆MNO∗	 Å = 1q − r + 1 i ∆�A,BcMNO∗ f ∆MNO∗	NOl�
NOl¿ , 

(122a) 
and the standard deviation of ∆�A,BcMNO∗ f ∆MNO∗	  about its mean, Ä∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆MNO∗	 Å, is 
given by  
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ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆MNO∗	 f
= g 1q − r − 1 � i c∆�A,BcMNO∗ f ∆MNO∗	  − Ä∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆MNO∗	 ÅftNOl�

NOl¿ �hx.�, 
(122b) 
where 1 ≤ a < b ≤ 2N. Thus, at time tϵ, within the full range of MNO∗  values that apply at that time, 
ÔA,Bc∆�A,BcpMNOlm∗ , MNOlt�∗ qf ∆MNO∗	 f is equal to the standard deviation about 
Ä∆�A,BcpMNOlm∗ , MNOlt�∗ qf ∆MNO∗	 Å, which is equal to the mean of all ∆�A,BcMNO∗ f ∆MNO∗	 . 
 
Within MNOl¿∗  to MNOl�∗  of replicate h of treatment group i at time tϵ, the mean of ²A,BcMNO∗ f is given 
by 

Ä²A,BcpMNOl¿∗ , MNOl�∗ qfÅ = 1q − r + 1 i ²A,BcMNO∗ fNOl�
NOl¿ , 

(124a) 
and the standard deviation of ²A,BcMNO∗ f about its mean, Ä²A,BcpMNOl¿∗ , MNOl�∗ qfÅ, is given by  

ÔA,B ¦²A,BcpMNOl¿∗ , MNOl�∗ qf¨ = g 1q − r − 1 � i c²A,BcMNO∗ f  − Ä²A,BcpMNOl¿∗ , MNOl�∗ qfÅftNOl�
NOl¿ �hx.�, 

(124b) 
where 1 ≤ a < b ≤ 2N. Thus, at time tϵ, within the full range of MNO∗  values that apply at that time, 
ÔA,B ¦²A,BcpMNOlm∗ , MNOlt�∗ qf¨ is equal to the standard deviation about Ä²A,BcpMNOlm∗ , MNOlt�∗ qfÅ, which 
is equal to the mean of all ²A,BcMNO∗ f. 
 
Within MNOl¿∗  to MNOl�∗  of replicate h of treatment group i at time tϵ, the mean of �²A,BcMNO∗ f� is given 
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by 
Ä�²A,BcpMNOl¿∗ , MNOl�∗ qf�Å = 1q − r + 1 i �²A,BcMNO∗ f�NOl�

NOl¿ , 
(125a) 
and the standard deviation of �²A,BcMNO∗ f� about its mean, Ä�²A,BcpMNOl¿∗ , MNOl�∗ qf�Å, is given by  

ÔA,Bc�²A,BcpMNOl¿∗ , MNOl�∗ qf�f = g 1q − r − 1 � i c�²A,BcMNO∗ f�  − Ä�²A,BcpMNOl¿∗ , MNOl�∗ qf�ÅftNOl�
NOl¿ �hx.�, 

(125b) 
where 1 ≤ a < b ≤ 2N. Thus, at time tϵ, within the full range of MNO∗  values that apply at that time, 
ÔA,Bc�²A,BcpMNOlm∗ , MNOlt�∗ qf�f is equal to the standard deviation about Ä�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å, 
which is equal to the mean of all �²A,BcMNO∗ f�. 
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Figure 52. The sets of NMSi,h(rj,tϵ) = GRNi,h(rj,tϵ), of which NMSi,h(rj,tα) = GRNi,h(rj,tα) is a subset, 
versus rj at tϵ = tα = t1 (∙∙∙∙∙),tϵ = t36 (∙∙∙∙∙),tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. 
The sets of GRNi,h(rj,tϵ) previously applied to replicate h = 1 of treatment group i = 4 were 
equated to the sets of NMS0,1(rj,tϵ) shown in this figure. Thus, as for h = 1 of i = 4 in Table 14a, set 
6a was used for NMS0,1(rj,tα), set 7a was used for NMS0,1(rj,t36), set 1b was used for NMS0,1(rj,t51), 
and set 1b was used for NMS0,1(rj,t66). To a close approximation, each set of NMS0,1(rj,tϵ) values is 
normally distributed about a mean of Ä>?@A,B([Cm, Ct�], De)Å = µRI = 0 fringe with a standard 
deviation of ÔA,B ¦>?@A,B([Cm, Ct�], De)¨ = σRI = 0.01400 fringe (Figure 5; Table 14). More 
importantly, at any given time, the standard deviation (Equation 119b) of NMS0,1(rj,tϵ) about its 
mean (Equation 119a) does not vary systematically from one narrow range of rj values to 
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another. 

 
Figure 53. Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ) versus rj at tϵ = t36 (∙∙∙∙∙),tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where 
i = 0 and h = 1. In general, Yi,h(rj,tϵ) = ΔNFSi(rj,tϵ) + 0 + ki,h,ϵ + ΔGRNi,h(rj,tϵ) (Equation 111a), or 
as originally cast (Equation 7), Yi,h(rj,tϵ) = NMSi,h(rj,tϵ) - NMSi,h(rj,tα). Here, NMSi,h(rj,tϵ) - 
NMSi,h(rj,tα) = ΔGRNi,h(rj,tϵ), which is the randomly distributed noise of Yi,h(rj,tϵ). (See Equation 
109.) The standard deviation of the randomly distributed noise of Yi,h(rj,tϵ) is about 20.5-fold 
greater than that of either NMSi,h(rj,tα) or NMSi,h(rj,tϵ), which are shown in Figure 52. (See the 
discussion that follows Equation 8.) Thus, to a close approximation, at any given time, each set of 
Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ) values is normally distributed about a mean of Ä�A,B([Cm, Ct�], De)Å µRI = 0 
fringe with a standard deviation of ÔA,B ¦�A,B([Cm, Ct�], De)¨ = 20.5σRI = 1.97990E-2 fringe (Figure 5; 
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Table 14). More importantly, for Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ), at any given time, the standard 
deviation (Equation 120b) of Yi,h(rj,tϵ) about its mean (Equation 120a) does not vary 
systematically from one narrow range of rj values to another. 

 
Figure 54. Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) versus MNO∗  at tϵ = t36 (∙∙∙∙∙),tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), 
where i = 0 and h = 1. In general (Equation 111), Yi,h(rj,tϵ) remapped from rj to MNO∗  yields 
Yi,h(MNO∗ ), where MNO∗  is calculated from rj and tϵ using Equation 5. As with Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ) 
mapped to rj in the previous figure, to a close approximation, at any given time, each set of 
Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) values is normally distributed about a mean of Ä�A,BcpMNOlm∗ , MNOlt�∗ qfÅ = 
µRI = 0 fringe with a standard deviation of ÔA,B ¦�A,BcpMNOlm∗ , MNOlt�∗ qf¨ = 20.5σRI = 1.97990E-2 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

253 

 

fringe (Figure 5; Table 14). More importantly, for Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ), at any given time, the 
standard deviation (Equation 121b) of Yi,h(MNO∗ ) about its mean (Equation 121a) does not vary 
systematically from one narrow range of MNO∗  values to another. 
 
The application of Equation 8 to Yi,h(MNO∗ ) yields ΔYi,h(MNO∗ )/ΔMNO∗  (Figure 55), which is an 
approximation of w§¡¢,£c¤¥O∗ f§¤¥O∗ y� . It is really ΔYi,h(MNO∗ )/ΔMNO∗  that can be considered the apparent 
signal with respect to data analysis. The operations performed to obtain ΔYi,h(MNO∗ )/ΔMNO∗  extract 
this signal from the raw data, NMSi,h(rj,tϵ) and NMSi,h(rj,tα) (Equation 7; Figure 52). 

 
Figure 55a. ∆�A,BcMNO∗ f ∆MNO∗	  versus MNO∗  at tϵ = t36 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, Yi,h(MNO∗ ) = 
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ΔGRNi,h(MNO∗ ). Figure 54 shows Yi,h(MNO∗ ), of which ∆�A,BcMNO∗ f ∆MNO∗	  is the approximate derivative 
with respect to MNO∗  (Equation 8). At any given time, the standard deviation (Equation 122b) of 
ΔYi,h(MNO∗ )/ΔMNO∗  about its mean (Equation 122a) varies systematically from one narrow range of 
MNO∗  values to another within the entire range of MNO∗ , across which, ΔYi,h(MNO∗ )/ΔMNO∗  is proportional 
to 1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj (Equation 117). As in this figure, at any given time, the 
proportionality of ΔYi,h(MNO∗ )/ΔMNO∗ to rj/Δrj produces fairly subtle effects across MNO∗ . The 
proportionality of ΔYi,h(MNO∗ )/ΔMNO∗ to tϵ produces obvious effects across time, as is shown by a 
comparison of Figures 55a, 55b and 55c, which apply to tϵ = t36, tϵ = t51 and tϵ = t66, respectively. 

 
Figure 55b. ∆�A,BcMNO∗ f ∆MNO∗	  versus MNO∗  at tϵ = t51 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, Yi,h(MNO∗ ) = 
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ΔGRNi,h(MNO∗ ). Figure 54 shows Yi,h(MNO∗ ), of which ∆�A,BcMNO∗ f ∆MNO∗	  is the approximate derivative 
with respect to MNO∗  (Equation 8). At any given time, the standard deviation (Equation 122b) of 
ΔYi,h(MNO∗ )/ΔMNO∗  about its mean (Equation 122a) varies systematically from one narrow range of 
MNO∗  values to another within the entire range of MNO∗ , across which, ΔYi,h(MNO∗ )/ΔMNO∗  is proportional 
to 1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj (Equation 117). As in this figure, at any given time, the 
proportionality of ΔYi,h(MNO∗ )/ΔMNO∗ to rj/Δrj produces fairly subtle effects across MNO∗ . The 
proportionality of ΔYi,h(MNO∗ )/ΔMNO∗ to tϵ produces obvious effects across time, as is shown by a 
comparison of Figures 55a, 55b and 55c, which apply to tϵ = t36, tϵ = t51 and tϵ = t66, respectively. 

 
Figure 55c. ∆�A,BcMNO∗ f ∆MNO∗	  versus MNO∗  at tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, Yi,h(MNO∗ ) = 
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ΔGRNi,h(MNO∗ ). Figure 54 shows Yi,h(MNO∗ ), of which ∆�A,BcMNO∗ f ∆MNO∗	  is the approximate derivative 
with respect to MNO∗  (Equation 8). At any given time, the standard deviation (Equation 122b) of 
ΔYi,h(MNO∗ )/ΔMNO∗  about its mean (Equation 122a) varies systematically from one narrow range of 
MNO∗  values to another within the entire range of MNO∗ , across which, ΔYi,h(MNO∗ )/ΔMNO∗  is proportional 
to 1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj (Equation 117). As in this figure, at any given time, the 
proportionality of ΔYi,h(MNO∗ )/ΔMNO∗ to rj/Δrj produces fairly subtle effects across MNO∗ . The 
proportionality of ΔYi,h(MNO∗ )/ΔMNO∗ to tϵ produces obvious effects across time, as is shown by a 
comparison of Figures 55a, 55b and 55c, which apply to tϵ = t36, tϵ = t51 and tϵ = t66, respectively. 

 
Figure 56a. ©A,BcMNO∗ f versus MNO∗  at tϵ = t36 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, ©A,BcMNO∗ f in this 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

257 

 

figure has its source in a noise-free signal (Figures 52 to 55). The nonredundant derivative of 
Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ for replicate h of treatment group i is ©A,BcMNO∗ f =
w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − �A,BcMNO∗ f (Equation 9a), in which the elimination function, �A,BcMNO∗ f, is equal to zero 
if MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� ≥ 0 and is equal to w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  otherwise (Equation 9a), with w§¡¢,£c¤¥O∗ f§¤¥O∗ y� being 
approximated as ΔYi,h(MNO∗ )/ΔMNO∗ (Figure 55a). Thus, the proportionality of nonzero values of 
ΔYi,h(MNO∗ )/ΔMNO∗  to1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj (Equation 117) is inherited by ©A,BcMNO∗ f 
wherever �A,BcMNO∗ f = 0. As such, at any given time, the standard deviation (Equation 123b) of 
©A,BcMNO∗ f about its mean (Equation 123a) varies systematically from one narrow range of MNO∗  
values to another. 
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Figure 56b. ©A,BcMNO∗ f versus MNO∗  at tϵ = t51 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, ©A,BcMNO∗ f in this 
figure has its source in a noise-free signal (Figures 52 to 55). The nonredundant derivative of 
Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ for replicate h of treatment group i is ©A,BcMNO∗ f =
w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − �A,BcMNO∗ f (Equation 9a), in which the elimination function, �A,BcMNO∗ f, is equal to zero 
if MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� ≥ 0 and is equal to w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  otherwise (Equation 9a), with w§¡¢,£c¤¥O∗ f§¤¥O∗ y� being 
approximated as ΔYi,h(MNO∗ )/ΔMNO∗ (Figure 55b). Thus, the proportionality of nonzero values of 
ΔYi,h(MNO∗ )/ΔMNO∗  to1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj (Equation 117) is inherited by ©A,BcMNO∗ f 
wherever �A,BcMNO∗ f = 0. As such, at any given time, the standard deviation (Equation 123b) of 
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©A,BcMNO∗ f about its mean (Equation 123a) varies systematically from one narrow range of MNO∗  
values to another. 

 
Figure 56c. ©A,BcMNO∗ f versus MNO∗  at tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, ©A,BcMNO∗ f in this 
figure has its source in a noise-free signal (Figures 52 to 55). The nonredundant derivative of 
Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ for replicate h of treatment group i is ©A,BcMNO∗ f =
w§¡¢,£c¤¥O∗ f§¤¥O∗ y� − �A,BcMNO∗ f (Equation 9a), in which the elimination function, �A,BcMNO∗ f, is equal to zero 
if MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� ≥ 0 and is equal to w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  otherwise (Equation 9a), with w§¡¢,£c¤¥O∗ f§¤¥O∗ y� being 
approximated as ΔYi,h(MNO∗ )/ΔMNO∗ (Figure 55c). Thus, the proportionality of nonzero values of 
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ΔYi,h(MNO∗ )/ΔMNO∗  to1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj (Equation 117) is inherited by ©A,BcMNO∗ f 
wherever �A,BcMNO∗ f = 0. As such, at any given time, the standard deviation (Equation 123b) of 
©A,BcMNO∗ f about its mean (Equation 123a) varies systematically from one narrow range of MNO∗  
values to another. 

 
Figure 57a. ²A,BcMNO∗ f versus MNO∗  at tϵ = t36 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, ²A,BcMNO∗ f in this 
figure has its source in a noise-free signal (Figures 52 to 56). The apparent sedimentation 
coefficient distribution function for replicate h of treatment group i at time tϵ is, by Equation 10, 
²A,BcMNO∗ f = ©A,BcMNO∗ fc�t¤¥O∗ ³´�Of. Multiplication of ©A,BcMNO∗ f by �t¤¥O∗ ³´�O yields a product that is 
normalised for the radial dilution or radial concentration effect that a hypothetical solute 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

261 

 

characterised by MNO∗  would have accumulated by time tϵ. As a consequence of being proportional 
to both ©A,BcMNO∗ f and �t¤¥O∗ ³´�O, ²A,BcMNO∗ f inherits �t¤¥O∗ ³´�O times the systematic MNO∗  dependence of 
the standard deviation of ©A,BcMNO∗ f about its mean. Thus, from one narrow range of MNO∗  values to 
another, the systematic MNO∗  dependence of the standard deviation (Equation 124b) about the 
mean (Equation 124a) is greater for ²A,BcMNO∗ f than it is for ©A,BcMNO∗ f at any given time. 

 
Figure 57b. ²A,BcMNO∗ f versus MNO∗  at tϵ = t51 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, ²A,BcMNO∗ f in this 
figure has its source in a noise-free signal (Figures 52 to 56). The apparent sedimentation 
coefficient distribution function for replicate h of treatment group i at time tϵ is, by Equation 10, 
²A,BcMNO∗ f = ©A,BcMNO∗ fc�t¤¥O∗ ³´�Of. Multiplication of ©A,BcMNO∗ f by �t¤¥O∗ ³´�O yields a product that is 
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normalised for the radial dilution or radial concentration effect that a hypothetical solute 
characterised by MNO∗  would have accumulated by time tϵ. As a consequence of being proportional 
to both ©A,BcMNO∗ f and �t¤¥O∗ ³´�O, ²A,BcMNO∗ f inherits �t¤¥O∗ ³´�O times the systematic MNO∗  dependence of 
the standard deviation of ©A,BcMNO∗ f about its mean. Thus, from one narrow range of MNO∗  values to 
another, the systematic MNO∗  dependence of the standard deviation (Equation 124b) about the 
mean (Equation 124a) is greater for ²A,BcMNO∗ f than it is for ©A,BcMNO∗ f at any given time. 

 
Figure 57c. ²A,BcMNO∗ f versus MNO∗  at tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, ²A,BcMNO∗ f in this 
figure has its source in a noise-free signal (Figures 52 to 56). The apparent sedimentation 
coefficient distribution function for replicate h of treatment group i at time tϵ is, by Equation 10, 
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²A,BcMNO∗ f = ©A,BcMNO∗ fc�t¤¥O∗ ³´�Of. Multiplication of ©A,BcMNO∗ f by �t¤¥O∗ ³´�O yields a product that is 
normalised for the radial dilution or radial concentration effect that a hypothetical solute 
characterised by MNO∗  would have accumulated by time tϵ. As a consequence of being proportional 
to both ©A,BcMNO∗ f and �t¤¥O∗ ³´�O, ²A,BcMNO∗ f inherits �t¤¥O∗ ³´�O times the systematic MNO∗  dependence of 
the standard deviation of ©A,BcMNO∗ f about its mean. Thus, from one narrow range of MNO∗  values to 
another, the systematic MNO∗  dependence of the standard deviation (Equation 124b) about the 
mean (Equation 124a) is greater for ²A,BcMNO∗ f than it is for ©A,BcMNO∗ f at any given time. 

 
Figure 58a. �²A,BcMNO∗ f� versus MNO∗  at tϵ = t36 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, �²A,BcMNO∗ f� in 
this figure has its source in a noise-free signal (Figures 52 to 57). At tϵ = t36, and at any other 
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given time, the standard deviation (Equation 125b) of �²A,BcMNO∗ f� about its mean (Equation 125a) 
varies systematically from one narrow range of MNO∗  values to another. If, from one narrow range 
of MNO∗  values to another, there were no systematic MNO∗  dependence of the standard deviation 
about the mean of �²A,BcMNO∗ f�, then KA,BcMNO∗ f, the integral of �²A,BcMNO∗ f� from MNOlm∗  to MNO∗ , would 
linearly approach cMNOlt�∗ − MNOlm∗  fÄ�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å as MNO∗  ranged from MNOlm∗  to MNOlt�∗ , 
while MA,B,e∗ cMNOlm∗ , MNO∗ f, the weight-average sedimentation coefficient within MNOlm∗  to MNO∗ , would 
linearly approach MA,B,e∗ cMNOlm∗ , MNOlt�∗ f = 0. As Ä�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å, the mean of all �²A,BcMNO∗ f� 
within the full range of MNO∗  values at tϵ = t36 (Table 18: -21.3665E-13 s to 21.3709E-13 s), is equal 
to 2.49231E12 fringe/s, cMNOlt�∗ − MNOlm∗  fÄ�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å = 10.65753 fringe at tϵ = t36. 
Instead, at tϵ = t36, KA,BcMNO∗ f approaches KA,BcMNOlt�∗ f = 10.43303 fringe with an approximately 
quadratic trend (Figure 59), while MA,B,e∗ cMNOlm∗ , MNO∗ f approaches MA,B,e∗ cMNOlm∗ , MNOlt�∗ f = 
3.12830E-13 s with an approximately quadratic trend (Figure 62). 
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Figure 58b. �²A,BcMNO∗ f� versus MNO∗  at tϵ = t51 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, �²A,BcMNO∗ f� in 
this figure has its source in a noise-free signal (Figures 52 to 57). At tϵ = t51, and at any other 
given time, the standard deviation (Equation 125b) of �²A,BcMNO∗ f� about its mean (Equation 125a) 
varies systematically from one narrow range of MNO∗  values to another. If, from one narrow range 
of MNO∗  values to another, there were no systematic MNO∗  dependence of the standard deviation 
about the mean of �²A,BcMNO∗ f�, then KA,BcMNO∗ f, the integral of �²A,BcMNO∗ f� from MNOlm∗  to MNO∗ , would 
linearly approach cMNOlt�∗ − MNOlm∗  fÄ�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å as MNO∗  ranged from MNOlm∗  to MNOlt�∗ , 
while MA,B,e∗ cMNOlm∗ , MNO∗ f, the weight-average sedimentation coefficient within MNOlm∗  to MNO∗ , would 
linearly approach MA,B,e∗ cMNOlm∗ , MNOlt�∗ f = 0. As Ä�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å, the mean of all �²A,BcMNO∗ f� 
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within the full range of MNO∗  values at tϵ = t51 (Table 18: -15.0822E-13 s to 15.0853E-13 s), is equal 
to 3.57702E12 fringe/s, cMNOlt�∗ − MNOlm∗  fÄ�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å = 10.79711 fringe at tϵ = t51. 
Instead, at tϵ = t51, KA,BcMNO∗ f approaches KA,BcMNOlt�∗ f = 10.50085 fringe with an approximately 
quadratic trend (Figure 59), while MA,B,e∗ cMNOlm∗ , MNO∗ f approaches MA,B,e∗ cMNOlm∗ , MNOlt�∗ f = 
2.25887E-13 s with an approximately quadratic trend (Figure 62). 

 
Figure 58c. �²A,BcMNO∗ f� versus MNO∗  at tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, �²A,BcMNO∗ f� in 
this figure has its source in a noise-free signal (Figures 52 to 57). At tϵ = t66, and at any other 
given time, the standard deviation (Equation 125b) of �²A,BcMNO∗ f� about its mean (Equation 125a) 
varies systematically from one narrow range of MNO∗  values to another. If, from one narrow range 
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of MNO∗  values to another, there were no systematic MNO∗  dependence of the standard deviation 
about the mean of �²A,BcMNO∗ f�, then KA,BcMNO∗ f, the integral of �²A,BcMNO∗ f� from MNOlm∗  to MNO∗ , would 
linearly approach cMNOlt�∗ − MNOlm∗  fÄ�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å as MNO∗  ranged from MNOlm∗  to MNOlt�∗ , 
while MA,B,e∗ cMNOlm∗ , MNO∗ f, the weight-average sedimentation coefficient within MNOlm∗  to MNO∗ , would 
linearly approach MA,B,e∗ cMNOlm∗ , MNOlt�∗ f = 0. As Ä�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å, the mean of all �²A,BcMNO∗ f� 
within the full range of MNO∗  values at tϵ = t66 (Table 18: -11.6545E-13 s to 11.6568E-13 s), is equal 
to 4.65149E12 fringe/s, cMNOlt�∗ − MNOlm∗  fÄ�²A,BcpMNOlm∗ , MNOlt�∗ qf�Å = 10.84938 fringe at tϵ = t66. 
Instead, at tϵ = t66, KA,BcMNO∗ f approaches KA,BcMNOlt�∗ f = 10.66301 fringe with an approximately 
quadratic trend (Figure 59), while MA,B,e∗ cMNOlm∗ , MNO∗ f approaches MA,B,e∗ cMNOlm∗ , MNOlt�∗ f = 
1.65244E-13 s with an approximately quadratic trend (Figure 62). 
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Figure 59. KA,BcMNO∗ f versus MNO∗ at tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = t66 (⎯⎯⎯), where i = 0 and h 
= 1. As i = 0, KA,BcMNO∗ f, the integral with respect to MNO∗  of �²A,BcMNO∗ f� in the previous figure, has its 
source in a noise-free signal (Figures 52 to 58). As there are no masks (Figures 20 to 23; Figure 
32) applied to the integrand, �²A,BcMNO∗ f�, or the data that give rise to it, M�Ak¾x∗  = MNOlm∗ , M�¿À¾x∗  = 
M�AkÁx∗  = 0 and M�¿ÀÁx∗  = MNOlt�∗  at time tϵ (Table 18 lists MNOlm∗  and = MNOlt�∗  at each time of 
analysis) are the limits applied to the integral that yields KA,BcMNOlt�∗ f at time tϵ (Equation 77). 
For each value of KA,BcMNO∗ f shown in this figure, the lower limit of integration is M�Ak¾x∗  = MNOlm∗  at 
time tϵ, and the upper limit of integration ranges from M�Ak¾x∗  to M�¿ÀÁx∗  = MNOlt�∗  at time tϵ. 
Figures 58a, 58b and 58c show �²A,BcMNO∗ f� for tϵ = t36,tϵ = t51 and tϵ = t66, respectively. 
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Figure 60a. MNO∗ �²A,BcMNO∗ f� versus MNO∗  at tϵ = t36 (∙∙∙∙∙), where i = 0 and h = 1. Figures 60b and 60c 
show MNO∗ �²A,BcMNO∗ f� versus MNO∗  at tϵ = t51 and tϵ = t66, respectively. Figure 61 shows the integral of 
MNO∗ �²A,BcMNO∗ f� with respect to MNO∗  at each time of analysis, tϵ = t36,tϵ = t51 and tϵ = t66. As i = 0, 
MNO∗ �²A,BcMNO∗ f� in this figure has its source in a noise-free signal (Figures 52 to 58). 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

270 

 

 
Figure 60b. MNO∗ �²A,BcMNO∗ f� versus MNO∗  at tϵ = t51 (∙∙∙∙∙), where i = 0 and h = 1. Figures 60a and 60c 
show MNO∗ �²A,BcMNO∗ f� versus MNO∗  at tϵ = t36 and tϵ = t66, respectively. Figure 61 shows the integral of 
MNO∗ �²A,BcMNO∗ f� with respect to MNO∗  at each time of analysis, tϵ = t36,tϵ = t51 and tϵ = t66. As i = 0, 
MNO∗ �²A,BcMNO∗ f� in this figure has its source in a noise-free signal (Figures 52 to 58). 
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Figure 60c. MNO∗ �²A,BcMNO∗ f� versus MNO∗  at tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. Figures 60a and 60b 
show MNO∗ �²A,BcMNO∗ f� versus MNO∗  at tϵ = t36 and tϵ = t51, respectively. Figure 61 shows the integral of 
MNO∗ �²A,BcMNO∗ f� with respect to MNO∗  at each time of analysis, tϵ = t36,tϵ = t51 and tϵ = t66. As i = 0, 
MNO∗ �²A,BcMNO∗ f� in this figure has its source in a noise-free signal (Figures 52 to 58). 
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Figure 61. The integral of MNO∗ �²A,BcMNO∗ f� with respect to MNO∗  at tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = 
t66 (⎯⎯⎯), where i = 0 and h = 1. As i = 0, the integral of MNO∗ �²A,BcMNO∗ f� in this figure has its source 
in a noise-free signal (Figures 52 to 60). Figures 60a, 60b and 60c show MNO∗ �²A,BcMNO∗ f� for tϵ = 
t36,tϵ = t51 and tϵ = t66, respectively. As there are no masks (Figures 20 to 23; Figure 32) applied 
to the integrand, MNO∗ �²A,BcMNO∗ f�, or the data that give rise to it, M�Ak¾x∗  = MNOlm∗ , M�¿À¾x∗  = M�AkÁx∗  = 0 
and M�¿ÀÁx∗  = MNOlt�∗  at time tϵ (Table 18 lists MNOlm∗  and = MNOlt�∗  at each time of analysis) are the 
limits applied to the integral that, upon division by KA,BcMNOlt�∗ f at time tϵ (Equation 77; Figure 
59), yields MA,B,e∗ cMNOlm∗ , MNOlt�∗ f at time tϵ (Equation 81a; Figure 62). For each value of the integral 
(the numerator of Equation 81a) shown in this figure, the lower limit of integration is M�Ak¾x∗  = 
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MNOlm∗  at time tϵ, and the upper limit of integration ranges from M�Ak¾x∗  to M�¿ÀÁx∗  = MNOlt�∗  at time 
tϵ. 

 
Figure 62. MA,B,e∗ cMNOlm∗ , MNO∗ f versus MNO∗  at tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = t66 (⎯⎯⎯), where i = 0 
and h = 1. As i = 0, MA,B,e∗ cMNOlm∗ , MNO∗ f in this figure has its source in a noise-free signal (Figures 52 
to 61). At any given value of MNO∗ , MA,B,e∗ cMNOlm∗ , MNO∗ f is equal to the integral of MNO∗ �²A,BcMNO∗ f� (Figure 
61) divided by KA,BcMNO∗ f (Figure 59). As there are no masks (Figures 20 to 23; Figure 32) applied 
to the integrands or the data that give rise to them, M�Ak¾x∗  = MNOlm∗ , M�¿À¾x∗  = M�AkÁx∗  = 0 and 
M�¿ÀÁx∗  = MNOlt�∗  at time tϵ (Table 18 lists MNOlm∗  and = MNOlt�∗  at each time of analysis) are the 
limits applied to the integrals (Equation 81a) that yield MA,B,e∗ cMNOlm∗ , MNOlt�∗ f at each time of 
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analysis. For each value of MA,B,e∗ cMNOlm∗ , MNO∗ f shown in this figure, the lower limit of integration is 
M�Ak¾x∗  = MNOlm∗  at time tϵ, and the upper limit of integration ranges from M�Ak¾x∗  to M�¿ÀÁx∗  = 
MNOlt�∗  at time tϵ.  
 
Changing N and rj values to keep ∆MNO∗  constant 
 
If ∆MNO∗ , the increment between consecutive values of MNO∗ , did not change over the full range of MNO∗ , 
and if, as in Equation 112, ΔYi,h(MNO∗ ) were equal to ∆∆KJ>A,BcMNO∗ f, the product, ∆NO∆¤¥O∗ ¦∆¡¢,£c¤¥O∗ f∆NO ¨ = 
∆¡¢,£c¤¥O∗ f∆¤¥O∗ , would, to a close approximation, be normally distributed about a mean of µRI = 0 fringe 
with a standard deviation equal to ∆NO∆¤¥O∗ σRI, where Δφϵ, being the increment in the index (Equation 
6), is always and everywhere equal to 1. Instead, the spacing between values of rj is such that, 
upon the application of Equation 5, ∆MNO∗  is a function of MNO∗ . Additionally, ∆MNO∗  is a function of tϵ. 
(See Figure 51.) 
 
As shown by Equations 16 and 17, 1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj. If each ∆MNO∗  were equal to 
a constant, ∆Mx∗, at all times and at all values of MNO∗ , then 

MNO∗ = M�AkO∗ + ze∆Mx∗ 
(126a) 
would always hold, but the number of MNO∗  values, 2Nϵ, would depend on tϵ, such that 

2>e + 1 = M�¿ÀO∗ − M�AkO∗∆Mx∗ − �M�¿ÀO∗ − M�AkO∗∆Mx∗  Ë~¶ 1� = 2M�¿ÀO∗∆Mx∗ − �2M�¿ÀO∗∆Mx∗  Ë~¶ 1�, 
(126b) 
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where  
M�¿ÀO∗ = 1stDe uv wC�C�y 

(126c) 
is the highest possible value of MNO∗  at time tϵ and  

M�AkO∗ = 1stDe uv wC�C� y 
(126d) 
is the lowest possible value of MNO∗  at time tϵ. The index, φϵ, would lie within 1 ≤ φϵ ≤ 2Nϵ at time 
tϵ. By application of Equation 114, the time-dependent radial positions would be given by  

CdO = Cx�¤¥O∗ ³´�O = Cx�¦¤÷¢úO∗ �NO∆¤;∗¨³´�O , 
(127)  
where the time-dependent index of CdO  would lie within 1 ≤ jϵ ≤ Nϵ, and where as in Equation 115, 

Cx = { C� }~C ze = |eC� }~C ze = |e + >e�  �v CdO = Cx�¦¤÷¢úO∗ �NO∆¤;∗¨³´�O . 
 (128) 
Thus, at a given value of cM�AkO∗ + ze∆Mx∗f, CdO  varies exponentially with ω2tϵ. As Nϵ is inversely 
proportional to ω2tϵ, at a given value of ∆Mx∗, the number of radial positions at which data are 
recorded decreases with time and the square of the angular velocity. As Nϵ is inversely 
proportional to ∆Mx∗, it would behove one to choose a value of ∆Mx∗ that is small enough to keep Nϵ 
from approaching zero before all solutes of interest have cleared the system between the radial 
extrema of accumulation. 
 
In principle, to ensure that ∆MNO∗  is constant with time and radial position, it should be possible to 
collect data at the time-dependent number, Nϵ, of time-dependent radial positions, CdO , described 
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by Equations 126to 128. Doing so would, where ΔYi,h(MNO∗ ) = ∆∆KJ>A,BcMNO∗ f, render ∆¡¢,£c¤¥O∗ f∆¤¥O∗  
normally distributed about a mean of µRI = 0 fringe with a standard deviation approximately 
equal to ∆NO∆¤¥O∗ σRI = m∆¤;∗σRI. Doing so, however, would still result in an MNO∗ -dependent signal-to-noise 
ratio of ë´l¥O∗ m´nO∆¤¥O∗  = ë´l¥O∗ m´nO∆¤;∗ , once ©A,BcMNO∗ f is multiplied by �t¤¥O∗ ³´�O  to obtain ²A,BcMNO∗ f, and 
would not solve the worse problem of data clipping. 
 
Mitigation of data clipping 
 
Each of the three possible outcomes for any given value of w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  is thoroughly described in 
an earlier section: The accumulated error in KA,BcMNOlt�∗ f increases in proportion to the clipping 
of random noise. Data clipping is one such outcome, and is the only possible outcome for the 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  values of Figure 55. Following a quick review of the all possible outcomes for 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  values generally, a method to reduce the extent of data clipping is presented. 
 
In general, MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0 holds for all w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  data that are retained, and all data that are 
retained are described as belonging to the data-retention category, while MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  < 0 
holds for all w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  data that are replaced with zeroes, and all data that are replaced with 
zeroes are described as belonging to the data-replacement (with zeroes) category. A value of 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  in the data-retention category yields, by Equation 9a, ©A,BcMNO∗ f = w§¡¢,£c¤¥O∗ f§¤¥O∗ y�, which, 
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by Equation 10, propagates to ²A,BcMNO∗ f = ©A,BcMNO∗ f�t¤¥O∗ ³´�O as w§¡¢,£c¤¥O∗ f§¤¥O∗ y� �t¤¥O∗ ³´�O , and thence, 
by Equation 11 or 77, contributes to the noise accumulated by KA,BcMNO∗ f upon integration of 
�²A,BcMNO∗ f�. A value of w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  in the data-replacement category yields ©A,BcMNO∗ f = 0, which 
renders ²A,BcMNO∗ f equal to zero, and thence contributes nothing to KA,BcMNO∗ f upon integration of 
�²A,BcMNO∗ f�, provided that, as it is often found, ²A,BcMNO�m∗ f and ²A,BcMNO�m∗ f are also equal to zero. 
(See The accumulated error in KA,BcMNOlt�∗ f increases in proportion to the clipping of random 
noise.) 
 
Over a range of MNO∗  values throughout which w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  (Equation 8) is either above zero or 
below zero exclusively, all of the data are replaced with zeroes if MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  < 0 holds 
throughout, and all of the data are retained if MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 0 holds throughout. In contrast, in 
data clipping, which is a phenomenon restricted to ranges of MNO∗  within which w§¡¢,£c¤¥O∗ f§¤¥O∗ y� is 
noise that varies randomly between positive and negative values (Figure 55), a random set of 
approximately half the data yield MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  > 0 and are accordingly retained, while the rest 
of the data yield MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  < 0 and are accordingly replaced with zeroes. 
 
Over a range of MNO∗  values throughout which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, the noise, w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  approximated 
as ΔYi,h(MNO∗ )/ΔMNO∗ , is clipped in going from ΔYi,h(MNO∗ )/ΔMNO∗  (Figure 55) to ©A,BcMNO∗ f (Figure 56). 
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Approximately half the noise would be in the data-retention category, for which MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� > 
0, and the rest of the noise would be in the data-replacement category, for which MNO∗ w§¡¢,£c¤¥O∗ f§¤¥O∗ y� 
< 0. The noise in the data-retention category would first render ©A,BcMNO∗ f = ΔYi,h(MNO∗ )/ΔMNO∗ , 
which would then render ²A,BcMNO∗ f = ©A,BcMNO∗ fc�t¤¥O∗ ³´�Of equal to w∆¡¢,£c¤¥O∗ f∆¤¥O∗ y c�t¤¥O∗ ³´�Of (Figure 
57), and thence contribute to the noise accumulated by KA,BcMNO∗ f (Figure 59) upon integration of 
�²A,BcMNO∗ f� (Figure 58). The noise in the data-replacement category would first render ©A,BcMNO∗ f 
equal to zero, which would then render ²A,BcMNO∗ f = ©A,BcMNO∗ fc�t¤¥O∗ ³´�Of equal to zero, and thence 
contribute nothing to KA,BcMNO∗ f upon integration of �²A,BcMNO∗ f�. 
 
Values of �²A,BcMNO∗ f� that are greater than zero due to noise result in nonzero values of 
MNO∗ �²A,BcMNO∗ f� (Figure 60), which then contribute to the integral of MNO∗ �²A,BcMNO∗ f� (Figure 61) with 
respect to MNO∗ . When divided by KA,BcMNOl�∗ f (Equation 77, with limits given in the legend of 
Figure 59), the integral of MNO∗ �²A,BcMNO∗ f� from MNOlm∗  to MNOl�∗  yields MA,B,e∗ cMNOlm∗ , MNOl�∗ f (Figure 62). 
Thus, values of �²A,BcMNO∗ f� that are greater than zero due to noise result in nonzero values of 
MA,B,e∗ cMNOlm∗ , MNOl�∗ f (Equation 81a, with limits given in the legend of Figure 62). 
 
The problem with data clipping is not that roughly half the data yield ²A,BcMNO∗ f = 0 over a range 
of MNO∗  values throughout which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0. The problem with data clipping is that roughly 
half the data yield ²A,BcMNO∗ f =  w§¡¢,£c¤¥O∗ f§¤¥O∗ y� �t¤¥O∗ ³´�O  over a range of MNO∗  values throughout which 
w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0. If instead, all the data yielded ²A,BcMNO∗ f =  0 over any range of MNO∗  values 
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throughout which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, the net contribution of noise to KA,BcMNO∗ f would be minimal. 
The less the net contribution of noise to KA,BcMNO∗ f, the less the net contribution of noise to MA,B,e∗  
(Equation 81a) is likely to be, and the more �¤¢,O∗  (Equation 83) should be minimised, thus 
bringing ÄMA,e∗ Å (Equation 82) as close to MA,e∗  (Equation 81b) as possible. 
 
If data for which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0 could be identified and set to zero before calculating �²A,BcMNO∗ f� 
and MNO∗ �²A,BcMNO∗ f�, the net contribution of noise to KA,BcMNO∗ f and MA,B,e∗ cMNOlm∗ , MNO∗ f would be 
minimised. Thus, a method is sought to identify data that are likely to be described by �A,BcMNO∗ f = 
∆KJ>A,BcMNO∗ f + ki,h,ϵ (Equation 111b), as w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0 wherever �A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f + 
ki,h,ϵ. As a step toward implementing such a method, the distribution of ΔGRNi,h(MNO∗ ) about its 
mean is examined in detail. 
 
In going from Equation 111a to Equation 111b, the difference in the randomly distributed noise 
is remapped from ΔGRNi,h(rj,tϵ) versus rj to ΔGRNi,h(MNO∗ ) versus MNO∗ , where MNO∗  is calculated from 
rj and tϵ using Equation 5. Equation 111 shows that, in the absence of a noise-free signal, and with 
ki,h,ϵ = 0, �A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f. Figure 54 shows that, at any given time, to a close 
approximation, Yi,h(MNO∗ ) = ∆KJ>A,BcMNO∗ f is normally distributed about a mean (Equation 121a) of 
Ä�A,BcpMNOlm∗ , MNOlt�∗ qfÅ ≅ µRI = 0 fringe with a standard deviation (Equation 121b) of 
ÔA,B ¦�A,BcpMNOlm∗ , MNOlt�∗ qf¨ ≅ 20.5σRI (Figure 5; Table 14). 
 
In general (Equation 111b), where w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0, �A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f + ki,h,ϵ, where ki,h,ϵ 
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contributes an MNO∗ -independent offset in the mean value of �A,BcMNO∗ f. As such, ki,h,ϵ has no effect 
the standard deviation in �A,BcMNO∗ f about its mean. Thus, �A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f + ki,h,ϵ is 
normally distributed about a mean (Equation 121a) of Ä�A,BcpMNOlm∗ , MNOlt�∗ qfÅ ≅ µRI + ki,h,ϵ = ki,h,ϵ 
with a standard deviation (Equation 121b) of ÔA,B ¦�A,BcpMNOlm∗ , MNOlt�∗ qf¨ ≅ 20.5σRI. 
 
By differentiating �A,BcMNO∗ f with respect to a variable on which ∆KJ>A,BcMNO∗ f depends but ki,h,ϵ 
does not, a result is obtained that is indistinguishable from that which would be found for ki,h,ϵ = 
0. One such variable is MNO∗ , which is problematic, in that the dependence of ΔMNO∗  on MNO∗  (Figure 
51) renders ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆MNO∗	 f proportional to 1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj 
(Equation 117; Figure 55), where ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆MNO∗	 f is the standard deviation 
(Equation 122b) of ΔYi,h(MNO∗ )/ΔMNO∗  about its mean (Equation 122a) within MNOl¿∗  ≤ MNO∗  ≤ MNOl�∗  at 
time tϵ, and ΔYi,h(MNO∗ )/ΔMNO∗  is the approximation used to evaluate the partial derivative of 
Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ (Equation 8). Another such variable is φϵ. 
 
If the partial derivative of Yi,h(MNO∗ ) = ∆KJ>A,BcMNO∗ f + ki,h,ϵ at time tϵ were taken with respect to the 
index, φϵ, for which Δφϵ, the increment between consecutive values, is always equal to 1, the 
approximated derivative, ∆¡¢,£c¤¥O∗ f∆NO  = ∆∆'k�¢,£c¤¥O∗ f∆NO  ≅ ¦§¡¢,£c¤¥O∗ f§NO ¨�  = ¦§∆'k�¢,£c¤¥O∗ f§NO ¨� would, to a close 
approximation, be normally distributed about a mean of µRI = 0 fringe with a standard deviation 
equal to σRI. (See discussion following Equation 8.) The evaluation of ∆¡¢,£c¤¥O∗ f∆NO  requires further 
consideration of differences in KJ>A,BcCd, Def values, as such differences are the source of the 
∆KJ>A,BcMNO∗ f values found within Yi,h(MNO∗ ) = ∆KJ>A,BcMNO∗ f + ki,h,ϵ. As ki,h,ϵ solely depends on tϵ 
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(Equations 108 and 111), ∆j¢,£,O∆NO  = ¦§j¢,£,O§NO ¨� = w§j¢,£,O§¤¥O∗ y�  = w§j¢,£,O§êO y�= 0. Thus, as in Figures 52 to 54, 
ki,h,ϵ is equated to zero throughout the evaluation of ∆¡¢,£c¤¥O∗ f∆NO  that follows. 
 
Within ra to rb of replicate h of treatment group i at time tϵ, the mean of KJ>A,BcCd, Def is given by 

ÄKJ>A,B([C¿, C�], De)Å = 1q − r + 1 i KJ>A,BcCd, Defdl�
dl¿ , 

(129a) 
and the standard deviation of KJ>A,BcCd, Def about its mean, ÄKJ>A,B([C¿, C�], De)Å, is given by  

ÔA,B ¦KJ>A,B([C¿, C�], De)¨ = g 1q − r − 1 �icKJ>A,BcCd, Def  − ÄKJ>A,B([C¿, C�], De)Åftdl�
dl¿ �hx.�, 

(129b) 
where 1 ≤ a < b ≤ N. Thus, at time tϵ, within the full range of rj values, ÔA,B ¦KJ>A,B([Cm, C�], De)¨ is 
equal to the standard deviation about ÄKJ>A,B([Cm, C�], De)Å, which is equal to the mean of all 
KJ>A,BcCd, Def. 
 
Given a difference such as Yi,h(rj,tϵ) = NMSi,h(rj,tϵ) - NMSi,h(rj,tα) (Equation 7; Figure 53), where 
NMSi,h(rj,tϵ) = GRNi,h(rj,tϵ), and NMSi,h(rj,tα) = GRNi,h(rj,tα) (Figure 52), Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ). 
For Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ), Equation 120a yields Ä�A,B([C¿, C�], De)Å = Ä∆KJ>A,B([C¿, C�], De)Å and 
Equation 120b yields ÔA,B ¦�A,B([C¿, C�], De)¨ = ÔA,B ¦∆KJ>A,B([C¿, C�], De)¨. Thus, at time tϵ, within the 
full range of MNO∗  values that apply at that time, ÔA,B ¦∆KJ>A,B([Cm, C�], De)¨ is equal to the standard 
deviation about Ä∆KJ>A,B([Cm, C�], De)Å, which is equal to the mean of all ∆KJ>A,BcMNO∗ f. The 
standard deviation of ΔGRNi,h(rj,tϵ) about its mean is also given by 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

282 

 

ÔA,B ¦∆KJ>A,B([Cm, C�], De)¨ = �ÔA,B ¦KJ>A,B([Cm, C�], De)¨ + ÔA,B ¦KJ>A,B([Cm, C�], D�)¨. 
(130) 
Thus, with ÔA,B ¦KJ>A,B([Cm, C�], De)¨ ≅ ÔA,B ¦KJ>A,B([Cm, C�], D�)¨ ≅ σRI = 0.01400 fringe, 
ÔA,B ¦∆KJ>A,B([Cm, C�], De)¨ ≅ 20.5σRI = 1.197990E-2 fringe. 
 
For Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ), Equation 121a yields Ä�A,BcpMNOl¿∗ , MNOl�∗ qfÅ = 
Ä∆KJ>A,BcpMNOl¿∗ , MNOl�∗ qfÅ and Equation 121b yields ÔA,B ¦�A,BcpMNOl¿∗ , MNOl�∗ qf¨ = 
ÔA,B ¦∆KJ>A,BcpMNOl¿∗ , MNOl�∗ qf¨. Thus, at time tϵ, within the full range of MNO∗  values that apply at 
that time, ÔA,B ¦∆KJ>A,BcpMNOlm∗ , MNOlt�∗ qf¨ is equal to the standard deviation about 
Ä∆KJ>A,BcpMNOlm∗ , MNOlt�∗ qfÅ, which is equal to the mean of all ∆KJ>A,BcMNO∗ f.  
 
As the sum of all ∆KJ>A,BcMNO∗ f divided by 2N (Equation 121a with Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ )) is 
equal to the sum of all ∆KJ>A,BcCd, Def divided by N (Equation 120a for Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ)), 

Ä∆KJ>A,BcpMNOlm∗ , MNOlt�∗ qfÅ = Ä∆KJ>A,B([Cm, C�], De)Å. 
(131a) 
As the sum of all c∆KJ>A,BcMNO∗ f  − Ä∆KJ>A,BcpMNOlm∗ , MNOlt�∗ qfÅft divided by 2N (Equation 121b 
with Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ )) is equal to the sum of all c∆KJ>A,BcCd , Def  − Ä∆KJ>A,B([Cm, C�], De)Åft 
divided by N (Equation 120b for Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ)), 

ÔA,B ¦∆KJ>A,BcpMNOlm∗ , MNOlt�∗ qf¨ = ÔA,B ¦∆KJ>A,B([Cm, C�], De)¨, 
(131b)  
given which, when Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ) is remapped from rj at tϵ to MNO∗ , the result (Figure 54), 
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Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ), has a standard deviation about its mean of approximately 20.5σRI. (See 
Equation 130.) 
 
The approximation used to evaluate the partial derivative of Yi,h(MNO∗ ) with respect to φϵ at time tϵ 
is given by, 
���A,BcMNO∗ f�ze �� ≅ 12 ��A,BcMNO∗ f − �A,BcMNO�m∗ fze − (ze − 1) + �A,BcMNO�m∗ f − �A,BcMNO∗ f(ze + 1) − ze � = 12 p�A,BcMNO�m∗ f − �A,BcMNO�m∗ fq

≡ ∆�A,BcMNO∗ f∆ze  
(132a) 
at φϵ within 1 < φϵ < 2N, 

���A,BcMNOlm∗ f�ze �� ≅ �A,BcMNO�m∗ f − �A,BcMNO∗ f(ze + 1) − ze = ∆�A,BcMNOlm∗ f ≡ ∆�A,BcMNOlm∗ f∆(ze = 1)  
(132b) 
at φϵ = 1, and  

���A,BcMNOlt�∗ fze �� ≅ �A,BcMNO∗ f − �A,BcMNO�m∗ fze − (ze − 1) = ∆�A,BcMNOlt�∗ f ≡ ∆�A,BcMNOlt�∗ f∆(ze = 2>)  
(132c) 
at φϵ = 2N. 
 
Within MNOl¿∗  to MNOl�∗  of replicate h of treatment group i at time tϵ, the mean of ∆�A,BcMNO∗ f ∆zeÂ  
(Equation 31) is given by 

Ä∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ Å = 1q − r + 1 i ∆�A,BcMNO∗ f ∆zeÂNOl�
NOl¿ , 

(133a) 
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and the standard deviation of ∆�A,BcMNO∗ f ∆zeÂ  about its mean, Ä∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ Å, is given 
by  

ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f
= g 1q − r − 1 � i c∆�A,BcMNO∗ f ∆zeÂ  − Ä∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ ÅftNOl�

NOl¿ �hx.�, 
(133b) 
where 1 ≤ a < b ≤ 2N. Thus, at time tϵ, within the full range of MNO∗  values that apply at that time, 
ÔA,Bc∆�A,BcpMNOlm∗ , MNOlt�∗ qf ∆zeÂ f is equal to the standard deviation about 
Ä∆�A,BcpMNOlm∗ , MNOlt�∗ qf ∆zeÂ Å, which is equal to the mean of all ∆�A,BcMNO∗ f ∆zeÂ . 
 
For Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ), it might be expected that the standard deviation in ∆¡¢,£c¤¥O∗ f∆NO  would be 
approximately equal to 2σRI. In the calculation of ∆¡¢,£c¤¥O∗ f∆NO , however, all but the innermost 
(Equation 132b) and outermost (Equation 132c) terms reduce to ¦�A,BcMNO�m∗ f − �A,BcMNO�m∗ f¨ 2Â  
(Equation 132a), which is a difference in �A,BcMNO∗ f values divided by 2. The standard deviation of 
¦�A,BcMNO�m∗ f − �A,BcMNO�m∗ f¨ 2Â  about its mean is given by 

ÔA,B ¦∆�A,BcpMNOlt∗ , MNOlt��m∗ qf¨2 = �ÔA,B ¦�A,BcpMNOlt∗ , MNOlt��m∗ qf¨ + ÔA,B ¦�A,BcpMNOlt∗ , MNOlt��m∗ qf¨2
= �2ÔA,B ¦�A,BcpMNOlt∗ , MNOlt��m∗ qf¨2 = 1Ó2�ÔA,B ¦�A,BcpMNOlt∗ , MNOlt��m∗ qf¨. 

(134) 
For Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) and N >> 2, by the reasoning applied to Equation 131b, 
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ÔA,B ¦∆KJ>A,BcpMNOlt∗ , MNOlt��m∗ qf¨ = ÔA,B ¦∆KJ>A,B([Ct, C��m], De)¨ ≅ 20.5σRI. Thus, for Yi,h(MNO∗ ) = 
ΔGRNi,h(MNO∗ ) and N >> 2, ÔA,B ¦∆�A,BcpMNOlt∗ , MNOlt��m∗ qf¨ 2Â , the standard deviation of 
¦�A,BcMNO�m∗ f − �A,BcMNO�m∗ f¨ 2Â  about its mean, is approximately equal to σRI. 
 
With a = 2 and b = 2N - 1, ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f of Equation 133b becomes identical to 
ÔA,B ¦∆�A,BcpMNOlt∗ , MNOlt��m∗ qf¨ 2Â  of Equation 134. Thus, for Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) and N >> 2, 
the standard deviation in ∆¡¢,£c¤¥O∗ f∆NO  is approximately the same as that in the raw data, for which 
ÔA,B ¦>?@A,B([Cm, Ct�], De)¨ ≅ σRI = 0.01400 fringe (Figure 5; Table 14; Equation 119b; Figure 52). 
As it is generally the case that N >> 2, it is generally the case that ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f 
≅ σRI = 0.01400 fringe. 
 
Given ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 0.01400 fringe, setting to zero the approximately 
95.45000% of ∆¡¢,£c¤¥O∗ f∆NO  values that lie within -2σRI and 2σRI (-0.02800 fringe < ∆¡¢,£c¤¥O∗ f∆NO  < 0.02800 
fringe) removes all but approximately 4.55000% of the signal-free data, for which w§¡¢c¤¥O∗ f§¤¥O∗ y� = 0. 
For times tϵ = t36, tϵ = t51 and tϵ = t66, Figure 63 shows the derivative of �A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f 
with respect to φϵ versus φϵ. (Compare Figure 63 with Figure 55, which shows the derivative of 
�A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f with respect to MNO∗  versus MNO∗  at the same times.) Figure 63 also 
distinguishes ∆¡¢,£c¤¥O∗ f∆NO  from the approximately 4.55000% of ∆¡¢,£c¤¥O∗ f∆NO  that lie outside the range of 
-2σRI to 2σRI. 
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Where a signal is present, ∆>F@AcMNO∗ f ≠ 0, and thus �A,BcMNO∗ f = ∆>F@AcMNO∗ f + ∆KJ>A,BcMNO∗ f + 
ki,h,ϵ must be used to describe the data (Equation 111b). The percentage of data for which 0 < 
∆¡¢,£c¤¥O∗ f∆NO  < 2σRI will be the percentage of data for which ∆¡¢,£c¤¥O∗ f∆NO  is mistaken for ∆'k�¢,£c¤¥O∗ f∆NO  and 
wrongly set to zero, despite �A,BcMNO∗ f being equal to ∆>F@AcMNO∗ f + ∆KJ>A,BcMNO∗ f + ki,h,ϵ, where 
∆>F@AcMNO∗ f ≠ 0. 
 
As Δφϵ = 1 always and everywhere,  

���A,BcMNO∗ f�MNO∗ �� = ���A,BcMNO∗ f�ze �� � �ze�MNO∗ �� ≅ ∆�A,BcMNO∗ f∆ze
∆ze∆MNO∗ = ∆�A,BcMNO∗ f∆ze

1∆MNO∗ = ∆�A,BcMNO∗ f∆ze
CdstDe∆Cd

≡ ∆�A,BcMNO∗ f∆MNO∗  
(135) 
where m∆¤¥O∗ is given by Equation 117, and where the relationship between rj and MNO∗  is given by 
Equations 114 and 115. Using Equation 135, ∆¡¢,£c¤¥O∗ f∆¤¥O∗  was calculated from the values of ∆¡¢,£c¤¥O∗ f∆NO  
shown in Figure 63 as a function of φϵ. Figure 64 shows the resulting values of ∆¡¢,£c¤¥O∗ f∆¤¥O∗  remapped 
from φϵ to MNO∗ . The remainder of the analysis (Figures 65 to 71) proceeds as previously shown 
(Figures 56 to 62). 
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Figure 63a. The derivative of �A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f with respect to φϵ (Equation 132) versus 
φϵ at tϵ = t36. All ∆¡¢,£c¤¥O∗ f∆NO  (∙) versus φϵ are shown and distinguished from the 4.55050% () of 
∆¡¢,£c¤¥O∗ f∆NO  that lie outside the range of -2σRI to 2σRI (ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 
0.01400 fringe), with -2σRI and 2σRI shown as blue lines. Replacing with zero any data for which 
∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI reduces the frequency with which Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) is 
treated as signal to approximately 4.55% of what it is when no data are replaced with zero 
(Figure 55a). 
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Figure 63b. The derivative of �A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f with respect to φϵ (Equation 132) versus 
φϵ at tϵ = t51. All ∆¡¢,£c¤¥O∗ f∆NO  (∙) versus φϵ are shown and distinguished from the 4.32852% () of 
∆¡¢,£c¤¥O∗ f∆NO  that lie outside the range of -2σRI to 2σRI (ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 
0.01400 fringe), with -2σRI and 2σRI shown as blue lines. Replacing with zero any data for which 
∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI reduces the frequency with which Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) is 
treated as signal to approximately 4.55% of what it is when no data are replaced with zero 
(Figure 55b). 
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Figure 63c. The derivative of �A,BcMNO∗ f = ∆KJ>A,BcMNO∗ f with respect to φϵ (Equation 132) versus 
φϵ at tϵ = t66. All ∆¡¢,£c¤¥O∗ f∆NO  (∙) versus φϵ are shown and distinguished from the 5.54939% () of 
∆¡¢,£c¤¥O∗ f∆NO  that lie outside the range of -2σRI to 2σRI (ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 
0.01400 fringe), with -2σRI and 2σRI shown as blue lines. Replacing with zero any data for which 
∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI reduces the frequency with which Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) is 
treated as signal to approximately 4.55% of what it is when no data are replaced with zero 
(Figure 55c). 
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Figure 64. ∆�A,BcMNO∗ f ∆MNO∗	  versus MNO∗  at tϵ = t36 (∙∙∙∙∙), tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 
and h = 1. As i = 0, Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ). Figure 63 shows ∆¡¢,£c¤¥O∗ f∆NO , the values of which were 
multiplied by ∆NO∆¤¥O∗  to obtain ∆�A,BcMNO∗ f ∆MNO∗	  (Equation 135) and remapped from φϵ to MNO∗  to 
produce this figure. As Δφϵ = 1, ∆NO∆¤¥O∗  = m∆¤¥O∗ , which Equation 117 shows is equal to ω2tϵrj/Δrj. (The 
relationship between rj and MNO∗  is given by Equations 114 and 115.) Replacing with zero any data 
for which ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI (Figure 63), where ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ 
σRI = 0.01400 fringe, reduces the frequency with which Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) is treated as 
signal to approximately 4.55% of what it is when no data are replaced with zero (Figure 55). 
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Figure 65. ©A,BcMNO∗ f versus MNO∗  at tϵ = t36 (∙∙∙∙∙), tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h 
= 1. As i = 0, these data have their source in a noise-free signal (Figures 64). Replacing with zero 
any data for which ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI (Figure 63), where 
ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 0.01400 fringe, reduces the number of nonzero ©A,BcMNO∗ f 
values to approximately 4.55% of what it is when no data are replaced with zero (Figure 56). 
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Figure 66. ²A,BcMNO∗ f versus MNO∗  at tϵ = t36 (∙∙∙∙∙), tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h 
= 1. As i = 0, these data have their source in a noise-free signal (Figures 64). Replacing with zero 
any data for which ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI (Figure 63), where 
ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 0.01400 fringe, reduces the number of nonzero ²A,BcMNO∗ f 
values to approximately 4.55% of what it is when no data are replaced with zero (Figure 57). 
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Figure 67. �²A,BcMNO∗ f� versus MNO∗  at tϵ = t36 (∙∙∙∙∙), tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h 
= 1. As i = 0, these data have their source in a noise-free signal (Figures 64). Replacing with zero 
any data for which ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI, where ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 
0.01400 fringe, reduces the number of nonzero �²A,BcMNO∗ f� values to approximately 4.55% of 
what it is when no data are replaced with zero (Figure 58). 
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Figure 68. KA,BcMNO∗ f versus MNO∗ at tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = t66 (⎯⎯⎯), where i = 0 and h 
= 1. As i = 0, these results have their source in a noise-free signal (Figures 64). For each value of 
KA,BcMNO∗ f shown in this figure, the lower limit of integration is M�Ak¾x∗  = MNOlm∗  at time tϵ, and the 
upper limit of integration ranges from M�Ak¾x∗  to M�¿ÀÁx∗  = MNOlt�∗  at time tϵ (Equation 77). 
Replacing with zero any data for which ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI (Figure 63), where 
ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 0.01400 fringe, reduces the number of nonzero �²A,BcMNO∗ f� 
values integrated to approximately 4.55% of what it is when no data are replaced with zero 
(Figure 59, the upper limit of which is shown above the break in the ordinate axis). 
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Figure 69. MNO∗ �²A,BcMNO∗ f� versus MNO∗  at tϵ = t36 (∙∙∙∙∙), tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 
and h = 1. As i = 0, these data have their source in a noise-free signal (Figures 64). Replacing 
with zero any data for which ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI (Figure 63), where 
ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 0.01400 fringe, reduces the number of nonzero 
MNO∗ �²A,BcMNO∗ f� values to approximately 4.55% of what it is when no data are replaced with zero 
(Figure 60). 
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Figure 70. The integral of MNO∗ �²A,BcMNO∗ f� with respect to MNO∗  at tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = 
t66 (⎯⎯⎯), where i = 0 and h = 1. As i = 0, these results have their source in a noise-free signal 
(Figures 64). For each value of the integral (the numerator of Equation 81a) shown in this figure, 
the lower limit of integration is M�Ak¾x∗  = MNOlm∗  at time tϵ, and the upper limit of integration 
ranges from M�Ak¾x∗  to M�¿ÀÁx∗  = MNOlt�∗  at time tϵ. Replacing with zero any data for which ∆¡¢,£c¤¥O∗ f∆NO  
lies within -2σRI to 2σRI (Figure 63), where ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 0.01400 fringe, 
reduces the number of nonzero MNO∗ �²A,BcMNO∗ f� values integrated to approximately 4.55% of what 
it is when no data are replaced with zero (Figure 61). 
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Figure 71. MA,B,e∗ cMNOlm∗ , MNO∗ f versus MNO∗  at tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = t66 (⎯⎯⎯), where i = 0 
and h = 1. As i = 0, these results have their source in a noise-free signal (Figures 64). At any 
given value of MNO∗ , MA,B,e∗ cMNOlm∗ , MNO∗ f is equal to the integral of MNO∗ �²A,BcMNO∗ f� (Figure 70) divided by 
KA,BcMNO∗ f (Figure 68). The limits applied to the integrals (Equation 81a) that yield 
MA,B,e∗ cMNOlm∗ , MNOlt�∗ f at each time of analysis are M�Ak¾x∗  = MNOlm∗ , M�¿À¾x∗  = M�AkÁx∗  = 0 and M�¿ÀÁx∗  
= MNOlt�∗  at time tϵ (Table 18 lists MNOlm∗  and = MNOlt�∗  at each time of analysis). For each value of 
MA,B,e∗ cMNOlm∗ , MNO∗ f shown in this figure, the lower limit of integration is M�Ak¾x∗  = MNOlm∗  at time tϵ, 
and the upper limit of integration ranges from M�Ak¾x∗  to M�¿ÀÁx∗  = MNOlt�∗  at time tϵ. Replacing 
with zero any data for which ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI (Figure 63), where 
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ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI = 0.01400 fringe, reduces the number of MNO∗ �²A,BcMNO∗ f� 
values integrated (compare Figure 59 with Figure 68) and reduces the number of MNO∗ �²A,BcMNO∗ f� 
values integrated (compare Figure 61 with Figure 70) to approximately 4.55% of what they are 
when no data are replaced with zero (compare Figure 62 with this figure). 
 
In going from the results in which no data are replaced with zero (Figure 55) to the results in 
which data are replaced with zero wherever ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI (Figure 63), at any 
given MNO∗  value, the fractional decrease in KA,BcMNO∗ f (Figures 59 and 68) is approximately the 
same as the fractional decrease in the value of the integral of MNO∗ �²A,BcMNO∗ f� (Figures 61 and 70). 
The fractional decrease in KA,BcMNO∗ f and the fractional decrease in the value of the integral of 
MNO∗ �²A,BcMNO∗ f� can both be attributed to the minimisation of data clipping that results from data 
being replaced with zero wherever ∆¡¢,£c¤¥O∗ f∆NO  lies within -2σRI to 2σRI or similar limits. 
 
As MA,B,e∗ cMNOlm∗ , MNO∗ f is equal to the integral of MNO∗ �²A,BcMNO∗ f� divided by KA,BcMNO∗ f, at any given MNO∗  
value, MA,B,e∗ cMNOlm∗ , MNO∗ f is approximately the same, regardless of whether data are replaced with 
zero (Figures 62 and 71). With respect to MA,B,e∗ cMNOlm∗ , MNO∗ f, however, the results would be 
dominated by any significant signal added to the data (Figure 52) from which Figures 62 and 71 
arise, and the more that the data were replaced with zero wherever ∆¡¢,£c¤¥O∗ f∆NO  lay within such 
limits as -2σRI to 2σRI, the more the signal would dominate the results. 
 
A comparison of three differential methods by which w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  can be obtained 
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Rather than remapping Yi,h(rj,tϵ) versus rj to �A,BcMNO∗ f versus MNO∗  (Equations 7 and 111) and then 
differentiating to obtain w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  approximated as ∆¡¢,£c¤¥O∗ f∆¤¥O∗  (Equation 8), w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  can be 
obtained via 

���A,BcMNO∗ f�MNO∗ �� = ���A,BcCd, Def�Cd �� � �Cd�MNO∗ �� ≅ ∆�A,BcCd, Def∆Cd
∆Cd∆MNO∗ = ∆�A,BcCd, Def∆Cd CdstDe ≡ ∆�A,BcMNO∗ f∆MNO∗ , 

(136) 
where ∆êO∆¤¥O∗ is given by Equation 116, and where the relationship between rj and MNO∗  is given by 
Equations 114 and 115. The approach represented by Equation 136 is identical to that employed 
by Bridgeman (1942). 
 
As w§¡¢,£cêOf§êO y� cannot be evaluated analytically, it must be approximated. The approximation used 
to evaluate the partial derivative of Yi,h(MNO∗ ) with respect to MNO∗  at time tϵ via the partial 
derivative of Yi,h(rj,tϵ) with respect to rj is given by 
���A,BcMNO∗ f�MNO∗ �� = ���A,BcMNO��∗ f�MNO∗ �� ≅ 12 ��A,BcCd, Def − �A,BcCd�m, DefCd − Cd�m + �A,BcCd�m, Def − �A,BcCd, DefCd�m − Cd � CdstDe

≡ ∆�A,BcMNO∗ f∆MNO∗ = ∆�A,BcMNO��∗ f∆MNO∗  
(137a) 
at j within 1 < j < N, 

���A,BcMNOlm∗ f�MNO∗ �� = ���A,BcMNOl��m∗ f�MNO∗ �� ≅ ��A,BcCd�m, Def − �A,BcCd, DefCd�m − Cd � CdstDe ≡ ∆�A,BcMNOlm∗ f∆MNOlm∗

= ∆�A,BcMNOl��m∗ f∆MNOl��m∗  
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(137b) 
at j = 1, and  

���A,BcMNOl�∗ f�MNO∗ �� = ���A,BcMNOlt�∗ f�MNO∗ �� ≅ ��A,BcCd, Def − �A,BcCd�m, DefCd − Cd�m � CdstDe ≡ ∆�A,BcMNOl�∗ f∆MNOl�∗

= ∆�A,BcMNOlt�∗ f∆MNOlt�∗  
(137c) 
at j = N. 
 
For a given set Yi,h(rj,tϵ) versus rj data, applying Equation 137 yields exactly the same values of 
∆¡¢,£c¤¥O∗ f∆¤¥O∗  as those obtained by first remapping Yi,h(rj,tϵ) versus rj to Yi,h(MNO∗ ) versus MNO∗  and then 
applying Equation 8. Thus, regardless of whether Equation 8 or Equation 137 is used to 
approximate w§¡¢,£c¤¥O∗ f§¤¥O∗ y� as ∆¡¢,£c¤¥O∗ f∆¤¥O∗ , all results obtained from that approximation, such as 
²A,BcMNO∗ f, KA,BcMNO∗ f and MA,B,e∗ cMNOlm∗ , MNO∗ f, are identical. 
 
Rather than obtaining w§¡¢,£c¤¥O∗ f§¤¥O∗ y�  by differentiating Yi,h(rj,tϵ) with respect to rj and multiplying 
the result by w §êO§¤¥O∗ y� as in Equations 136 and 137, or simply by differentiating �A,BcMNO∗ f with 
respect to MNO∗  as in Equation 8, w§¡¢,£c¤¥O∗ f§¤¥O∗ y�O  can be obtained via 

���A,BcMNO∗ f�MNO∗ ��O
= ����A,BcCd, Def�De �êO − ���A,BcMNO∗ f�De �¤¥O∗ � � �De�MNO∗ �êO , 

(138) 
in which both Yi,h(rj,tϵ) and �A,BcMNO∗ f are differentiated with respect to tϵ, and the difference 
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between the derivatives is multiplied by w §�O§¤¥O∗ yêO , which is easily evaluated. 
 
Equation 138 is based on Stafford’s (1992, 1994, 2000) derivation of ²A,BcMNO∗ f, which starts with 
the total differential of Yi,h(rj,tϵ) with respect to MNO∗  and tϵ, 

 ¶�A,BcCd , Def = ���A,BcCd, Def�MNO∗ ��O
¶MNO∗ + ���A,BcCd , Def�De �¤¥O∗ ¶De , 

(139a) 
from which, through division by an infinitesimally small change in tϵ at constant rj, the partial 
derivative of Yi,h(rj,tϵ) with respect to tϵ at constant rj,  

���A,BcCd, Def�De �êO = ���A,BcCd, Def�MNO∗ ��O
��MNO∗�De �ê + ���A,BcCd, Def�De �¤¥O∗ , 

(139b) 
is obtained. Solving Equation 139b for w§¡¢,£cêO,�Of§¤¥O∗ y�O  yields 

���A,BcCd , Def�MNO∗ ��O
= ����A,BcCd, Def�De �êO − ���A,BcCd , Def�De �¤¥O∗ � � �De�MNO∗ �êO . 

(139c)  
Remapping w§¡¢,£cêO,�Of§¤¥O∗ y�O  versus rj to w§¡¢,£c¤¥O∗ f§¤¥O∗ y�O  versus MNO∗  and remapping ¦§¡¢,£cêO,�Of§�O ¨¤¥O∗  versus 
rj to ¦§¡¢,£c¤¥O∗ f§�O ¨¤¥O∗  versus MNO∗  yields Equation 138, which is the form of Equation 139c that is most 
convenient to approximate. Before presenting the approximation of w§¡¢,£c¤¥O∗ f§¤¥O∗ y�O , w §�O§¤¥O∗ yêO  is 
solved analytically. 
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Previously (Equation 114), Equation 5 was solved for rj to obtain Cd = Cx�¤¥O∗ ³´�O , where, in 
correspondence with Equation 6, r0 = rb for φϵ = j, while r0 = rm for φϵ = j + N (Equation 115). 
Solving Equation 114 for tϵ and differentiating with respect to MNO∗  at constant rj yields 

� �De�MNO∗ �êO = −1csMNO∗ ft uv wCdCxy = − De1stDe uv ¦CdCx¨ = − DeMNO∗  . 
(140) 
As tϵ cannot be less than zero, Equation 140 shows that the signs of w §�O§¤¥O∗ yêO  and MNO∗  are always 
opposite. 
  
Equation 138 is approximated as 

∆�A,BcMNO∗ f∆MNO∗ = �∆�A,BcCd , Def∆De − ∆�A,BcMNO∗ f∆De � ∆De∆MNO∗  , 
(141) 
where ∆�O∆¤¥O∗  is an approximation of w §�O§¤¥O∗ yêO  and, on the basis of Equation 5, 

∆MNO∗ = 1st ô 1De − 1Dsõ uv wCdCxy = ô −∆DestDsDeõ uv wCdCxy 
(142) 
is the change in MNO∗  from time tδ to time tϵ at radial position rj. The time increment, Δtϵ, is equal to 
tϵ - tδ. Equation 6 shows each of the two possible values of r0 that can apply to Equation 5. As 
noted with respect to Equation 7, rj is an actual radial position where a value of Yi,h(rj,tϵ) is 
recorded at time tϵ. (See Point-by-point subtraction of data recorded at one time from data 
recorded at a later time.) Using Equation 142 in the denominator ∆�O∆¤¥O∗  and taking the limit at Δtϵ, 
approaches zero yields 
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lim�t→�O
∆De∆MNO∗ = lim�t→�O

∆Deô −∆DestDsDeõ uv ¦CdCx¨ = − De1stDe uv ¦CdCx¨ = − DeMNO∗ = � �De�MNO∗ �êO , 
(143) 
which is consistent with the result obtained in Equation 140. 
 
Signal differences, Yi,h(rj,tδ) and Yi,h(rj,tϵ), at a common radial position, rj, but different times, tδ 
and tϵ, where tδ ≠ tϵ, will not generally map to a common value of the apparent sedimentation 
coefficient. That is, for tδ ≠ tϵ, in general, MNt∗  ≠ MNO∗  at φδ = φϵ = j or φδ = φϵ = j + N (Equations 5, 
6 and 144a). Thus, to evaluate ∆¡¢,£c¤¥O∗ f∆�O  at the apparent sedimentation coefficients calculated for 
time tϵ at the actual radial positions, which are the values of rj for which 1 ≤ j ≤ N, it is necessary 
to calculate interpolated values of the radial position that would apply if the apparent 
sedimentation coefficients at time tδ were equal to those at time tϵ. 
 
The actual values of the apparent sedimentation coefficient at tϵ are given by 

MNO∗ = 1stDe uv wCdCxy, 
(Equation 5) 
where rj is an actual radial position where a value of Yi,h(rj,tϵ) is recorded at time tϵ. As previously 
stated (Equations 6 and 115), r0 = rb for φϵ = j, while r0 = rm for φϵ = j + N. 
 
The actual values of the apparent sedimentation coefficient at tδ are given by 

MNt∗ = 1stDs uv wCdCxy, 
(144a) 
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where rj is an actual radial position where a value of Yi,h(rj,tδ) is recorded at time tδ. As at any 
other time (Equations 6 and 115), r0 = rb for φδ = j, while r0 = rm for φδ = j + N. 
 
The interpolated values of MNO∗  at tδ are given by 

MNO∗∗ = 1stDs uv �Cd∗Cx�, 
(144b) 
where Cd∗ is an interpolated radial position with respect to the original Yi,h(rj,tδ) versus rj data at 
tδ. As with φδ and φϵ (Equations 6 and 115), r0 = rb for ze∗ = j, while r0 = rm for ze∗ = j + N. As the 
set of all MNO∗∗  equals the set of all MNO∗ , the right-hand sides of Equations 5 and 144b can be equated 
and solved for Cd∗ to obtain 

Cd∗ = ¦Cd�tCx�O��t¨ m�O = ¦Cd�tCx∆�O¨ m�O  . 
(145a) 
Alternatively, given tδ and MNO∗ , Cd∗ Equation 114 can be used to calculate 

Cd∗ = Cx�  ¤¥O∗ ³´�t = Cx�  ¤¥O∗∗ ³´�t . 
(145b) 
 
The interpolated values needed to evaluate the partial derivative of Yi,h(MNO∗ ) with respect to tϵ at 
constant MNO∗  are calculated as 

�A,BcMNO∗∗ f = �A,BcCd∗, Dsf = �A,BcCd, Dsf + ���A,BcCd, Dsf�Cd ��O
cCd∗ − Cdf, 

(146) 
for which the partial derivative of Yi,h(rj,tϵ) with respect to rj is approximated as 
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���A,BcCd, Dsf�Cd ��O
≅ 12 ��A,BcCd , Dsf − �A,BcCd�m, DsfCd − Cd�m + �A,BcCd�m, Dsf − �A,BcCd , DsfCd�m − Cd � ≡ ∆�A,BcCd, Dsf∆Cd  

(147a) 
at j within 1 < j < N, 

���A,BcCdlm, Dsf�Cd ��O
≅ �A,BcCd�m, Dsf − �A,BcCd , DsfCd�m − Cd ≡ ∆�A,BcCdlm, Dsf∆MNOlm∗  

(147b) 
at j = 1, and  

���A,BcCdl�, Dsf�Cd ��O
≅ �A,BcCd, Dsf − �A,BcCd�m, DsfCd − Cd�m ≡ ∆�A,BcCdl� , Dsf∆Cd  

(147c) 
at j = N. 
 
Within 1 ≤ j ≤ N, the approximation used to evaluate the partial derivatives of Yi,h(MNO∗ ) with 
respect to tϵ at constant rj and constant MNO∗  are given, respectively, by 

���A,BcCd, Def�De �êO ≅ �A,BcCd, Def − �A,BcCd , DsfDe − Ds ≡ ∆�A,BcCd, Def∆De  
(148) 
and 

���A,BcMNO∗ f�De �¤¥O∗ ≅ �A,BcMNO∗ f − �A,BcMNO∗∗ fDe − Ds ≡ ∆�A,BcMNOld∗ f∆De = ∆�A,BcMNOld��∗ f∆De . 
(149)  
 
 
As noted with respect to Equations 111a and 111b, the signal difference, Yi,h(rj,tϵ) = 
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NMSi,h(rj,tϵ) - NMSi,h(rj,tα), can be remapped from Yi,h(rj,tϵ) versus rj (Equation 111a) to Yi,h(MNO∗ ) 
versus MNO∗  (Equation 111b), where MNO∗  is calculated from rj and tϵ using Equation 5. In the 
process, the difference in the time-independent noise is remapped from ΔTINi,h(rj) = 0 versus rj 
(1b, 7, 107 and 111a) to ΔTINi,h(MNO∗ ) = 0 versus MNO∗  (Equation 111b), the difference in the 
radially independent noise is remapped from ΔRINi,h(tϵ) = RINi,h(tϵ) - RINi,h(tα) = ki,h,ϵ versus rj 
(Equations 1b, 7, 108 and 111a) to ΔRINi,h(MNO∗ ) = ki,h,ϵ versus MNO∗  (Equation 111b), the difference 
in the noise-free signal is remapped from ΔNFSi(rj,tϵ) = NFSi(rj,tϵ) - NFSi(rj,tα) versus rj (1b, 7, 110 
and 111a) to ΔNFSi(MNO∗ ) versus MNO∗  (Equation 111b), and the difference in the randomly 
distributed noise is remapped from ΔGRNi,h(rj,tϵ) = GRNi,h(rj,tϵ) - GRNi,h(rj,tα) versus rj (Equations 
1b, 7, 109 and 111a) to ΔGRNi,h(MNO∗ ) versus MNO∗  (Equation 111b). 
 
Likewise, the signal difference, Yi,h(rj,tδ) = NMSi,h(rj,tδ) - NMSi,h(rj,tα), can be remapped from 
Yi,h(rj,tδ) versus rj to Yi,h(MNO∗ ) versus MNt∗ , where MNt∗  is calculated from rj and tδ using Equation 
144a. In the process, the difference in the time-independent noise is remapped from ΔTINi,h(rj) = 
0 versus rj to ΔTINi,h(MNt∗ ) = 0 versus MNt∗ , the difference in the radially independent noise is 
remapped from ΔRINi,h(tδ) = RINi,h(tδ) - RINi,h(tα) = ki,h,δ versus rj to ΔRINi,h(MNt∗ ) = ki,h,δ versus 
MNO∗ , the difference in the noise-free signal is remapped from ΔNFSi(rj,tδ) = NFSi(rj,tδ) - NFSi(rj,tα) 
versus rj to ΔNFSi(MNt∗ ) versus MNt∗ , and the difference in the randomly distributed noise is 
remapped from ΔGRNi,h(rj,tδ) versus rj to ΔGRNi,h(MNt∗ ) versus MNt∗ . 
 
Similarly, the interpolated signal difference, Yi,h(Cd∗,tδ) (Equation 146), can be remapped from 
Yi,h(Cd∗,tδ) versus Cd∗ to Yi,h(MNO∗∗ ) versus MNO∗∗ , where MNO∗∗  is calculated from Cd∗ and tδ using Equation 
144b. In the process, the difference in the time-independent noise is remapped from ΔTINi,h(Cd∗) 
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= ΔTINi,h(rj) = 0 versus rj to ΔTINi,h(MNO∗∗ ) = 0 versus MNt∗ , the difference in the radially 
independent noise is remapped from ΔRINi,h(tδ) = ki,h,δ versus rj to ΔRINi,h(MNO∗∗ ) = ki,h,ϵ* versus MNO∗∗ , 
the difference in the noise-free signal is remapped from ΔNFSi(Cd∗,tδ) versus Cd∗ to ΔNFSi(MNO∗∗ ) 
versus MNO∗∗ , and the difference in the randomly distributed noise is remapped from ΔGRNi,h(Cd∗,tδ) 
= GRNi,h(rj,tϵ) - GRNi,h(rj,tα) versus Cd∗ to ΔGRNi,h(MNO∗∗ ) versus MNO∗∗ .  
 
The use of the signal differences, Yi,h(rj,tϵ) and Yi,h(rj,tδ), ensures that the time-independent noise 
has already been eliminated before Equation 138 (approximated as Equation 141) is applied. 
(For Yi,h(rj,tϵ), ΔTINi,h(rj) = 0. For Yi,h(rj,tδ), ΔTINi,h(rj) = 0.) As there is no time-independent noise 
in the signal differences, �A,BcMNO∗ f or Yi,h(MNt∗ ), there is no interpolated time-independent noise in 
�A,BcMNO∗∗ f. (For Yi,h(MNO∗ ), ΔTINi,h(MNO∗ ) = 0. For Yi,h(MNt∗ ), ΔTINi,h(MNt∗ ) = 0.) Thus, the time-
independent noise contributes nothing to ¦§¡¢,£c¤¥O∗ f§�O ¨¤¥O∗  (Equation 138) or its approximation, 
∆¡¢,£c¤¥O∗ f∆¤¥O∗  (Equation 141).  
 
If NMSi,h(rj,tϵ) (Equation 1b) were used in place of Yi,h(rj,tϵ) (Equation 7), such that 
¦§���¢,£c¤¥O∗ f§�O ¨¤¥O∗  approximated as ∆���¢,£c¤¥O∗ f∆�O  took the place of ¦§¡¢,£c¤¥O∗ f§�O ¨¤¥O∗  approximated as 
∆¡¢,£c¤¥O∗ f∆�O  in Equation 141, at each value of MNO∗  = MNO∗∗  (Equations 5 and 144), an interpolated value, 
TINi,h(Cd∗), of the time-independent noise at Cd∗ = Cx�  ¤¥O∗∗ ³´�t  would be subtracted from the actual 
value (Equation 107), TINi,h(rj), of the time-independent noise at Cd = Cx�¤¥O∗ ³´�O. As can be seen 
from Equation 145, the more that Δtϵ differs from zero, the farther Cd∗ lies from rj. The greater the 
distance between Cd∗ and rj, the more poorly the time-independent noise would be eliminated in 
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the course of calculating ∆���¢,£c¤¥O∗ f∆�O  at constant MNO∗ . Furthermore, as implemented here 
(Equations 138 to 150), even in the limit as Δtϵ approached zero (Equation 151), w§uv�¢,£cêOf§¤¥O∗ y�O  
would be a component of w§���¢,£c¤¥O∗ f§¤¥O∗ y�O  if NMSi,h(rj,tϵ) were used in place of Yi,h(rj,tϵ). Thus, this 
method does not permit the use of NMSi,h(rj,tϵ) in place of Yi,h(rj,tϵ). 
 
As both ΔRINi,h(tϵ) and ΔRINi,h(tδ) are constant with rj, the radially independent noise present in 
ΔYi,h(rj,tϵ) = Yi,h(rj,tϵ) - Yi,h(rj,tδ) of Equation 141 is equal to ΔRINi,h(tϵ) - ΔRINi,h(tδ) = 
RINi,h(tϵ) - RINi,h(tδ). As ΔRINi,h(MNO∗ ) is constant with MNO∗ , and as ΔRINi,h(MNO∗∗ ) is constant with MNO∗∗  
= MNO∗ , the radially independent noise present in ΔYi,h(MNO∗ ) = Yi,h(MNO∗ ) - Yi,h(MNO∗∗ ) of Equation 141 is 
equal to ΔRINi,h(MNO∗∗ ) - ΔRINi,h(MNO∗ ) = RINi,h(MNO∗∗ ) - RINi,h(MNO∗ ), which, by Equation 111, is also 
equal to RINi,h(tϵ) - RINi,h(tδ). Thus, with Δtϵ being identical in both terms, when ∆¡¢,£c¤¥O∗ f∆�O  is 
subtracted from ∆¡¢,£cêO,�Of∆�O  in Equation 141, the radially independent noise is eliminated. 
As the finite approximation of w§¡¢,£c¤¥O∗ f§¤¥O∗ y�O  of Equation 141 is ultimately shown (Equation 150) 
to be proportional to rj times the finite approximation of w§¡¢,£cêO,�tf§êO y�O  of Equation 137, and as 
that equation shows rj times that approximation to be proportional to the finite approximation of 
w§¡¢,£c¤¥O∗ f§¤¥O∗ y�O  of Equation 8, there is neither an advantage nor a disadvantage to one of these 
methods of obtaining w§¡¢,£c¤¥O∗ f§¤¥O∗ y�O  over the other, as each, by Equation 133b, would yield 
ÔA,Bc∆�A,BcpMNOl¿∗ , MNOl�∗ qf ∆zeÂ f ≅ σRI for Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ). (See Equations 129 to 134 in 
Mitigation of data clipping.) As previously noted (Figure 5; Table 14), σRI = 0.01400 fringe is the 
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approximate standard deviation in GRNi,h(rj,tα), GRNi,h(rj,tϵ) or the generally random noise at any 
other time, such as tδ. 
 
Applying Equations 142, 148 and 149 to Equation 141 yields 

∆�A,BcMNO∗ f∆MNO∗ = ��A,BcCd, Def − �A,BcCd, DsfDe − Ds − �A,BcMNO∗ f − �A,BcMNO∗∗ fDe − Ds �o −(De − Ds)
ô−(De − Ds)stDsDe uv ¦CdCx¨õp

= ��A,BcMNO∗ f − �A,BcMNO∗∗ f + �A,BcCd, Dsf − �A,BcCd, DefDe − Ds � Dsô 1stDe uv ¦CdCx¨õ . 
(150a) 
Application of Equation 5 to the denominator in the right-most term of Equation 150a results in 

∆�A,BcMNO∗ f∆MNO∗ = ��A,BcMNO∗ f − �A,BcMNO∗∗ f + �A,BcCd, Dsf − �A,BcCd, DefDe − Ds � DsMNO∗  . 
(150b)  
Using Equation 5 to express Yi,h(rj,tϵ) as �A,BcMNO∗ f, Equation 150b reduces to 

∆�A,BcMNO∗ f∆MNO∗ = ��A,BcCd, Dsf − �A,BcMNO∗∗ fDe − Ds � DsMNO∗  . 
(150c) 
Using Equation 146 to substitute for �A,BcMNO∗∗ f in Equation 150c yields, after placement of the 
minus sign with the right-most term, 

∆�A,BcMNO∗ f∆MNO∗ = ���A,BcCd, Dsf�Cd ��O
�cCd∗ − CdfDe − Ds � �− DsMNO∗ � , 

(150d) 
where, as in Equations 6 and 115, r0 = rb for φϵ = j, while r0 = rm for φϵ = j + N. 
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In the limit as tδ approaches tϵ, Cd∗ approaches rj (Equation 145b), and the application of this limit 
to Equation 150d yields 

lim�t→�O
∆�A,BcMNO∗ f∆MNO∗ = − ���A,BcCd, Def�Cd ��O

��Cd�De�¤¥O∗ � �De�MNO∗ �êO = ���A,BcCd, Def�Cd ��O
� �Cd�MNO∗ ��O

= ���A,BcMNO∗ f�MNO∗ ��O
. 

(151) 
That w §êO§¤¥O∗ y�O  = − ¦§êO§�O¨¤¥O∗ w §�O§¤¥O∗ yêO can be shown using previously discussed Equations. By 
Equation 114, Cd = Cx�¤¥O∗ ³´�O , from which 

� �Cd�MNO∗ ��O
= stDeCx�¤¥O∗ ³´�O = stDeCd 

(152) 
is obtained by differentiation with respect to MNO∗  at constant tϵ. This result is also shown by 
Equation 116, the focus of which, however, is the finite forms of w §êO§¤¥O∗ y�O  and w§¤¥O∗

§êO y�O . Finally, 
Equations 140 and 143 both yield w §�O§¤¥O∗ yêO = − �O¤¥O∗ . Thus, 

− ��Cd�De�¤¥O∗ � �De�MNO∗ �êO = stDeCd = � �Cd�MNO∗ ��O
. 

(153) 
 
Equation 151 shows the close correspondence between Equations 137 and 150. The equivalence 
of Equation 137 to Equation 8, in turn, shows the close correspondence between Equations 8 and 
150. Thus, it should come as no surprise that Equations 8 and Equations 150 yield strikingly 
similar results when applied to comparable data sets, including the sort of signal-free data used 
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to produce Figures 52 to 62. Figures 72 to 82 show results obtained by application of Equation 
150 to signal-free data sets that correspond as closely as possible to those used for Figures 52 to 
62. All the data sets from Figures 52 to 62 are reused in Figures 72 to 82. To render Equation 150 
applicable, an additional set of signal-free data is assigned a time that is 60 s prior to each of the 
previously used data sets associated with times t36, t51 and t66 of Figures 52 to 62. 
 
As noted in the legend of Figure 52, the sets of GRNi,h(rj,tϵ) previously applied to replicate h = 1 of 
treatment group i = 4 were equated to the sets of NMS0,1(rj,tϵ) shown in that figure. Thus, as for h 
= 1 of i = 4 in Table 14a, set 6a was used for NMS0,1(rj,tα), set 7a was used for NMS0,1(rj,t36), set 1b 
was used for NMS0,1(rj,t51), and set 1b was used for NMS0,1(rj,t66). 
 
For the new data sets, denoted as NMS0,1(rj,tδ), where tδ = tϵ - 60 s, three sets of GRNi,h(rj,tϵ) 
previously applied to replicate h = 2 of treatment group i = 4 were equated to three additional 
sets of NMS0,1(rj,tδ) needed to obtain results via Equation 150. Thus, as for h = 2 of i = 4 in Table 
14a, but with a -60-second time difference, set 2b was used for NMS0,1(rj,t35), set 3b was used for 
NMS0,1(rj,t50), and set 3b was used for NMS0,1(rj,t65), where tδ = t35 = t36 - 60 s, tδ = t50 = t51 - 60 s 
and tδ = t65 = t66 - 60 s. 
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Figure 72. The sets of NMSi,h(rj,tδ) = GRNi,h(rj,tδ), of which NMSi,h(rj,tα) = GRNi,h(rj,tα) is a subset, 
versus rj at tδ = tα = t1 (∙∙∙∙∙),tδ = t35 (∙∙∙∙∙),tδ = t50 (∙∙∙∙∙) and tδ = t65 (∙∙∙∙∙), where i = 0 and h = 1. 
The sets of GRNi,h(rj,tδ) previously applied to replicate h = 2 of treatment group i = 4 were 
equated to the sets of NMS0,1(rj,tδ) shown in this figure. Thus, as for h = 2 of i = 4 in Table 14a, 
but with a -60-second time difference, set 2b was used for NMS0,1(rj,t35), set 3b was used for 
NMS0,1(rj,t50), and set 3b was used for NMS0,1(rj,t65), where tδ = t35 = t36 - 60 s, tδ = t50 = t51 - 60 s 
and tδ = t65 = t66 - 60 s. To a close approximation, each set of NMS0,1(rj,tδ) values is normally 
distributed about a mean of Ä>?@A,B([Cm, Ct�], Ds)Å = µRI = 0 fringe with a standard deviation of 
ÔA,B ¦>?@A,B([Cm, Ct�], Ds)¨ = σRI = 0.01400 fringe (Figure 5; Table 14). At any given time, the 
standard deviation (Equation 119b) of NMS0,1(rj,tδ) about its mean (Equation 119a) does not 
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vary systematically from one narrow range of rj values to another. Figure 52 shows the sets of 
NMSi,h(rj,tϵ) = GRNi,h(rj,tϵ) versus rj at tϵ = t36,tϵ = t51 and tϵ = t66, where i = 0 and h = 1. 

 
Figure 73. Yi,h(rj,tδ) = ΔGRNi,h(rj,tδ) versus rj at tδ = t35 (∙∙∙∙∙),tδ = t50 (∙∙∙∙∙) and tδ = t65 (∙∙∙∙∙), where 
i = 0 and h = 1. In general, Yi,h(rj,tδ) = ΔNFSi(rj,tδ) + 0 + ki,h, δ + ΔGRNi,h(rj,tδ) (Equation 111a), or 
as originally cast (Equation 7), Yi,h(rj,tδ) = NMSi,h(rj,tδ) - NMSi,h(rj,tα). Here, NMSi,h(rj,tδ) - 
NMSi,h(rj,tα) = ΔGRNi,h(rj,tδ), which is the randomly distributed noise of Yi,h(rj,tδ). (See Equation 
109.) The standard deviation of the randomly distributed noise of Yi,h(rj,tδ) is about 20.5-fold 
greater than that of either NMSi,h(rj,tα) or NMSi,h(rj,tδ), which are shown in Figure 72. Thus, to a 
close approximation, at any given time, each set of Yi,h(rj,tδ) = ΔGRNi,h(rj,tδ) values is normally 
distributed about a mean of Ä�A,B([Cm, Ct�], Ds)Å µRI = 0 fringe with a standard deviation of 
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ÔA,B ¦�A,B([Cm, Ct�], Ds)¨ = 20.5σRI = 1.97990E-2 fringe (Figure 5; Table 14). More importantly, for 
Yi,h(rj,tδ) = ΔGRNi,h(rj,tδ), at any given time, the standard deviation (Equation 120b) of Yi,h(rj,tδ) 
about its mean (Equation 120a) does not vary systematically from one narrow range of rj values 
to another. Figure 53 shows Yi,h(rj,tϵ) = ΔGRNi,h(rj,tϵ) versus rj at tϵ = t36,tϵ = t51 and tϵ = t66, where 
i = 0 and h = 1. 

 
Figure 74. Yi,h(MNt∗ ) = ΔGRNi,h(MNt∗ ) versus MNO∗  at tδ = t35 (∙∙∙∙∙),tδ = t50 (∙∙∙∙∙) and tδ = t65 (∙∙∙∙∙), 
where i = 0 and h = 1. In general (Equation 111), Yi,h(rj,tϵ) remapped from rj to MNt∗  yields 
Yi,h(MNt∗ ), where MNt∗  is calculated from rj and tδ using Equation 144a. As with Yi,h(rj,tϵ) = 
ΔGRNi,h(rj,tϵ) mapped to rj in the previous figure, to a close approximation, at any given time, each 
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set of Yi,h(MNt∗ ) = ΔGRNi,h(MNt∗ ) values is normally distributed about a mean of 
Ä�A,BcpMNtlm∗ , MNtlt�∗ qfÅ = µRI = 0 fringe with a standard deviation of ÔA,B ¦�A,BcpMNtlm∗ , MNtlt�∗ qf¨ = 
20.5σRI = 1.97990E-2 fringe (Figure 5; Table 14). More importantly, for Yi,h(MNt∗ ) = ΔGRNi,h(MNt∗ ), 
at any given time, the standard deviation (Equation 121b) of Yi,h(MNt∗ ) about its mean (Equation 
121a) does not vary systematically from one narrow range of MNt∗  values to another. Figure 54 
shows Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) versus MNO∗  at tϵ = t36,tϵ = t51 and tϵ = t66, where i = 0 and h = 1. 

 
Figure 75. ∆�A,BcMNO∗ f ∆MNO∗	 , determined using Equation 150, versus MNO∗  at tϵ = t36 (∙∙∙∙∙),tϵ = t51 
(∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, Yi,h(MNO∗ ) = ΔGRNi,h(MNO∗ ) (Figure 54) and 
Yi,h(MNt∗ ) = ΔGRNi,h(MNt∗ ) (Figure 74). At any given time, the standard deviation (Equation 122b) 
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of ΔYi,h(MNO∗ )/ΔMNO∗  about its mean (Equation 122a) varies systematically from one narrow range 
of MNO∗  values to another within the entire range of MNO∗ , across which, ΔYi,h(MNO∗ )/ΔMNO∗  is 
proportional to 1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj (Equation 117). Figure 55 shows 
∆�A,BcMNO∗ f ∆MNO∗	 , determined using Equation 8, versus MNO∗  at tϵ = t36,tϵ = t51 and tϵ = t66, where i = 
0 and h = 1. 

 
Figure 76. ©A,BcMNO∗ f, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 150, versus MNO∗  at 
tϵ = t36 (∙∙∙∙∙),tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, ©A,BcMNO∗ f in this figure 
has its source in a noise-free signal (Figures 52 to 55 and 72 to 75). The proportionality of 
nonzero values of ΔYi,h(MNO∗ )/ΔMNO∗  to1/∆MNOld∗  = 1/∆MNOl��d∗  = ω2tϵrj/Δrj (Equation 117; Figure 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

317 

 

75) is inherited by ©A,BcMNO∗ f (Equation 9a) wherever the elimination function (Equation 9b), 
�A,BcMNO∗ f, is equal to zero. As such, at any given time, the standard deviation (Equation 123b) of 
©A,BcMNO∗ f about its mean (Equation 123a) varies systematically from one narrow range of MNO∗  
values to another. Figure 56 shows ©A,BcMNO∗ f, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using 
Equation 8, versus MNO∗  at tϵ = t36,tϵ = t51 and tϵ = t66, where i = 0 and h = 1. 

 
Figure 77. ²A,BcMNO∗ f, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 150, versus MNO∗  at 
tϵ = t36 (∙∙∙∙∙),tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, ²A,BcMNO∗ f in this figure 
has its source in a noise-free signal (Figures 52 to 56 and 72 to 76). The apparent sedimentation 
coefficient distribution function for replicate h of treatment group i at time tϵ is, by Equation 10, 
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²A,BcMNO∗ f = ©A,BcMNO∗ fc�t¤¥O∗ ³´�Of. As a consequence of being proportional to both ©A,BcMNO∗ f (Figure 
76) and �t¤¥O∗ ³´�O, ²A,BcMNO∗ f inherits �t¤¥O∗ ³´�O times the systematic MNO∗  dependence of the 
standard deviation of ©A,BcMNO∗ f about its mean. Thus, from one narrow range of MNO∗  values to 
another, the systematic MNO∗  dependence of the standard deviation (Equation 124b) about the 
mean (Equation 124a) is greater for ²A,BcMNO∗ f than it is for ©A,BcMNO∗ f at any given time. Figure 57 
shows ²A,BcMNO∗ f, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 8, versus MNO∗  at tϵ = 
t36,tϵ = t51 and tϵ = t66, where i = 0 and h = 1. 

 
Figure 78. �²A,BcMNO∗ f�, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 150, versus MNO∗  
at tϵ = t36 (∙∙∙∙∙),tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. As i = 0, �²A,BcMNO∗ f� in this 
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figure has its source in a noise-free signal (Figures 52 to 57 and 72 to 77). At tϵ = t36, and at any 
other given time, the standard deviation (Equation 125b) of �²A,BcMNO∗ f� about its mean (Equation 
125a) varies systematically from one narrow range of MNO∗  values to another. Figure 58 shows 
�²A,BcMNO∗ f�, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 8, versus MNO∗  at tϵ = t36,tϵ = 
t51 and tϵ = t66, where i = 0 and h = 1. 

 
Figure 79. KA,BcMNO∗ f, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 150, versus MNO∗ at 
tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = t66 (⎯⎯⎯), where i = 0 and h = 1. As i = 0, KA,BcMNO∗ f, the 
integral with respect to MNO∗  of �²A,BcMNO∗ f� in the previous figure, has its source in a noise-free 
signal (Figures 52 to 58 and 72 to 78). For each value of KA,BcMNO∗ f shown in this figure, the lower 
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limit of integration is M�Ak¾x∗  = MNOlm∗  at time tϵ, and the upper limit of integration ranges from 
M�Ak¾x∗  to M�¿ÀÁx∗  = MNOlt�∗  at time tϵ. Figure 59 shows KA,BcMNO∗ f, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  
determined using Equation 8, versus MNO∗  at tϵ = t36,tϵ = t51 and tϵ = t66, where i = 0 and h = 1. 

 
Figure 80. MNO∗ �²A,BcMNO∗ f�, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 150, versus 
MNO∗  at tϵ = t36 (∙∙∙∙∙),tϵ = t51 (∙∙∙∙∙) and tϵ = t66 (∙∙∙∙∙), where i = 0 and h = 1. \Figure 81 shows the 
integral of MNO∗ �²A,BcMNO∗ f� with respect to MNO∗  at each time of analysis, tϵ = t36,tϵ = t51 and tϵ = t66. As 
i = 0, MNO∗ �²A,BcMNO∗ f� in this figure has its source in a noise-free signal (Figures 52 to 58 and 72 to 
78). Figure 60 shows MNO∗ �²A,BcMNO∗ f�, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 8, 
versus MNO∗  at tϵ = t36,tϵ = t51 and tϵ = t66, where i = 0 and h = 1. 
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Figure 81. The integral of MNO∗ �²A,BcMNO∗ f�, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using 
Equation 150, with respect to MNO∗  at tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = t66 (⎯⎯⎯), where i = 0 and 
h = 1. As i = 0, the integral of MNO∗ �²A,BcMNO∗ f� in this figure has its source in a noise-free signal 
(Figures 52 to 60 and 72 to 80). As there are no masks (Figures 20 to 23; Figure 32) applied to 
the integrands or the data that give rise to them, M�Ak¾x∗  = MNOlm∗ , M�¿À¾x∗  = M�AkÁx∗  = 0 and M�¿ÀÁx∗  
= MNOlt�∗  at time tϵ (Table 18 lists MNOlm∗  and = MNOlt�∗  at each time of analysis) are the limits 
applied to the integral that, upon division by KA,BcMNOlt�∗ f at time tϵ (Equation 77; Figure 79), 
yields MA,B,e∗ cMNOlm∗ , MNOlt�∗ f at time tϵ (Equation 81a; Figure 82). For each value of the integral (the 
numerator of Equation 81a) shown in this figure, the lower limit of integration is M�Ak¾x∗  = MNOlm∗  



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

322 

 

at time tϵ, and the upper limit of integration ranges from M�Ak¾x∗  to M�¿ÀÁx∗  = MNOlt�∗  at time tϵ. 
Figure 61 shows the integral of MNO∗ �²A,BcMNO∗ f�, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using 
Equation 8, with respect to MNO∗  at tϵ = t36,tϵ = t51 and tϵ = t66, where i = 0 and h = 1. 

 
Figure 82. MA,B,e∗ cMNOlm∗ , MNO∗ f, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 150, 
versus MNO∗  at tϵ = t36 (⎯⎯⎯),tϵ = t51 (⎯⎯⎯) and tϵ = t66 (⎯⎯⎯), where i = 0 and h = 1. As i = 0, 
MA,B,e∗ cMNOlm∗ , MNO∗ f in this figure has its source in a noise-free signal (Figures 52 to 61 and 72 to 81). 
At any given value of MNO∗ , MA,B,e∗ cMNOlm∗ , MNO∗ f is equal to the integral of MNO∗ �²A,BcMNO∗ f� (Figure 81) 
divided by KA,BcMNO∗ f (Figure 79). As there are no masks (Figures 20 to 23; Figure 32) applied to 
the integrands or the data that give rise to them, M�Ak¾x∗  = MNOlm∗ , M�¿À¾x∗  = M�AkÁx∗  = 0 and M�¿ÀÁx∗  
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= MNOlt�∗  at time tϵ (Table 18 lists MNOlm∗  and = MNOlt�∗  at each time of analysis) are the limits 
applied to the integrals (Equation 81a) that yield MA,B,e∗ cMNOlm∗ , MNOlt�∗ f at each time of analysis. For 
each value of MA,B,e∗ cMNOlm∗ , MNO∗ f shown in this figure, the lower limit of integration is M�Ak¾x∗  = MNOlm∗  
at time tϵ, and the upper limit of integration ranges from M�Ak¾x∗  to M�¿ÀÁx∗  = MNOlt�∗  at time tϵ. 
Figure 62 shows MA,B,e∗ cMNOlm∗ , MNO∗ f, obtained from ∆�A,BcMNO∗ f ∆MNO∗	  determined using Equation 8, 
versus MNO∗  at tϵ = t36,tϵ = t51 and tϵ = t66, where i = 0 and h = 1.  
 
IMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOLIMAGINARY EXPERIMENTAL PROTOCOL    
 
A somewhat general AUC velocity protocol that might have been applied had the work been real 
 
The AUC velocity (a.k.a. sedimentation velocity) protocol described here is somewhat general, in 
that much would apply to work conducted with any Beckman model XL-I analytical 
ultracentrifuge at some temperature of interest within such instruments’ range of 4.0°C to 40.0°C, 
but some parts of the protocol apply specifically to the sort of instrument (www.lmb.ubc.ca/BT-
xli-auc.html) maintained by the Centre for Biothermodynamics (supported by the Michael Smith 
Foundation for Health Research Infrastructure Grant) at the University of British Columbia. 
Furthermore, to strengthen the tenuous link between real AUC experiments and imaginary 
experiments in which data have been generated by simulations, the protocol is based on that 
which one might apply if one could actually conduct the simulated AUC described here (DATADATADATADATA) 
and in previous works (Moody, 2012a and 2012b). Hence, 20.0°C is assumed to be the 
temperature of interest. 
 
It is further assumed that, for the sake of example, an imaginary experimental protocol might 
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serve as well as a real one. It is also assumed that no real experiment involving an analytical 
ultracentrifuge should ever be conducted. (For a detailed example of just a small part of the 
initial portion of a real AUC velocity experiment, see Data that formed the basis of GRNi,h(r,t).) 
Bear in mind that a preparative centrifuge is a ghastly machine that should never be connected to 
power, let alone operated. More dreadful still is an analytical ultracentrifuge, which is a demonic 
contraption that casts its users into an especially nauseating neighbourhood of a Circle of Hell 
that spins ever faster in all reference frames, including its own somehow. Take it from Dante 
Alighieri: “Lasciate ogne speranza, voi ch’intrate.” 
 
Preliminary procedures 
 
Prior to the first experiment in the series, the radial position would, for the hypothetical 
experiments described here, be calibrated for the interference optical system using the 4-hole 
An-60 Ti rotor as described in Common interference system settings, below. Prior to loading the 
reference-and-sample-filled cells into the 4-hole An-60 Ti rotor, the rotor and optical periscope 
would be equilibrated to temperature at vacuum, at 0 RPM, for over an hour. (Rotor speeds are 
given in RPM or kRPM, where 1 kRPM = 1000 RPM.) 
 
The An-60 Ti rotor has a maximum speed of 60 kRPM. The An-50 Ti, which is an 8-hole rotor, has 
a maximum speed of 50 kRPM. Methods for the two rotors are similar, but where important 
differences exist, they are noted below. 
 
Personal protection equipment (PPE) 
 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

325 

 

Appropriate PPE, including full-coverage footwear, full-coverage clothing, safety glasses, a lab 
coat and chemical-resistant gloves that do not leak, should be worn whenever solutions or 
centrifuge parts are handled, and whenever hazardous events, such as chemical spills or glass 
breakage, may occur. The materials of everything worn should be appropriate to the hazards that 
may be present. (Consider, with respect to fire hazards for example, that while cotton and a 
typical synthetic fibre will both burn, the synthetic fibre may also melt and become stuck to the 
skin.) 
 
Velocity cell assembly 
 
A velocity cell comprises a housing, two windows, two window holders, two window gaskets, two 
window liners, a velocity centrepiece, a screw-ring washer, a screw ring, two housing-plug 
gaskets and two housing plugs, plus two spacers if the centrepiece is less than full height. As the 
housing, the windows, the window holders, the screw ring and the spacers are cylindrical in 
profile, it is convenient to describe these components in terms of cylindrical coordinates. For 
guidance in the proper assembly of a cell, relevant diagrams in appropriate manuals should be 
consulted. 
 
Each velocity cell would be assembled using 2 sapphire windows, each placed in on a window 
gasket in a window holder, with a window liner between the cylindrical edge of the window and 
the wall of the holder against which the window would press in the presence of centrifugal 
forces. Once in their holders, the fully accessible faces of the sapphire windows would be placed 
directly against the flat faces of a double-sector epon centrepiece with a 0.3 cm or 1.2 cm height 
along its longitudinal axis. It is this height of the centrepiece that determines the optical path-
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length. (See Cell loading. Also see Equations 154a and 155a.) If a 0.3 cm centrepiece were used, 
one 0.45 cm spacer would be placed below the lower window holder and one 0.45 cm spacer 
would be placed above the upper window holder. In all cases, the recessed faces of the window 
holders would be the faces farthest from the centrepiece. After hand-tightening a Spinkote-
lubricated screw ring underlain by a Spinkote-lubricated screw-ring gasket, each cell would be 
tightened using a torque of 125 inch-pounds. A few minutes later, the torque would be checked 
for each cell. A few minutes after that, the torque would again be checked for each cell. (The 
purpose of such checking is to minimise the chance of a solution leaking from a cell at any 
possible rotor speed.) 
 
Cell identification and paired placement in the rotor 
 
Each cell is identified by the number of the rotor position it will occupy in an experiment, and 
each cell placed in the rotor must be counterbalanced by a cell in the rotor position directly 
opposite to it. 
 
When using a 4-hole rotor, the counterbalance/calibration cell is placed in position 4, and the cell 
it is balanced against is placed in rotor position 2. The cell in rotor position 2 is identified as cell 
2, and the counterbalance/calibration cell in rotor position 4 can be referred to as cell 4. An 
additional pair of counterbalanced cells can be placed in rotor positions 1 and 3. If used, rotor 
positions 1 and 3 would be occupied by cells 1 and 3, respectively. 
 
When using an 8-hole rotor, the counterbalance/calibration cell is placed in position 8, and the 
cell it is balanced against is placed in rotor position 4. The cell in rotor position 4 is identified as 
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cell 4, and the counterbalance/calibration cell in rotor position 8 can be referred to as cell 8. 
Additional pairs of counterbalanced cells can be paired opposite each other in rotor positions 1 
versus 5, 2 versus 6, and 3 versus 7. If used, rotor positions 1 and 5 would be occupied by cells 1 
and 5, respectively, rotor positions 2 and 6 would be occupied by cells 2 and 6, respectively, rotor 
positions 3 and 7 would be occupied by cells 3 and 7, respectively. 
 
Cell loading 
 
Each cell would be loaded with a replicate sample/reference pair of solutions, for which the 
height of the centrepiece is the optical path-length, L. The most commonly employed centrepiece 
heights are thus the most commonly employed optical path-lengths, which are L = 1.2 cm and L 
= 0.3 cm. On average, the solution volumes in a 0.3 cm velocity centrepiece are (0.3 cm)/(1.2 cm) 
of those of a 1.2 cm velocity centrepiece. For some degree of generality, solution volumes and 
masses are thus given as multiples of L/(1.2 cm). 
 
The reference solution, at a volume of approximately (0.475 ml)L/(1.2 cm) (approximate 
maximum volume), would be loaded by tuberculin syringe (Becton-Dickinson ½ ml with 27 G × 
½ inch, permanently attached needle) into the reference channel of each cell. Care should be 
taken to avoid scratching the centrepiece or windows with the needle! During AUC, such 
scratches can cause solutions to exhibit nonlaminar fluid flows that render any collected data 
uninterpretable. 
 
Once filled, each reference channel would be closed with a Teflon gasket and a brass housing plug 
at a torque of 33 inch-pounds. 
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The sample solution, at a volume of approximately (0.465 ml)L/(1.2 cm), would then be loaded 
by sterile tuberculin syringe into the sample channel of each cell. Again, care should be taken to 
avoid scratching the centrepiece or windows with the needle! 
 
Once filled, each sample channel would then be closed with a Teflon housing-plug gasket under a 
brass housing plug to which a torque of 33 inch-pounds would be applied with an appropriate 
device. 
 
To ensure that each sample's meniscus position (needed to analyse the data in terms of the 
apparent sedimentation coefficient and its distribution function) would be determinable, each 
cell would be visually inspected to confirm that the volume of the reference exceeded the volume 
of the sample. 
 
Cell balancing 
 
The mass of each reference-and-sample-filled cell would be checked after loading. The masses of 
cells to be loaded directly opposite one another in the rotor must be within 0.5 g of each other. 
When working with aqueous solutions, masses typically range from approximately 39.2 g to 39.5 
g for cells assembled and loaded as described above. It is preferable and usually possible to 
ensure that any two opposing cells that are within 0.15 g of each other. When the rotor is 
spinning, a difference of more than 1 g between directly opposite cells can be detected by the XL-I 
as a sufficient imbalance of mass to warrant a forced deceleration to 0 RPM.  
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If possible, the counterweight/calibration cell with a counterweight of appropriate mass would 
be placed and aligned in its designated rotor position (rotor position 4 for a 4-hole rotor), and it 
would not be removed or re-aligned until data for all replicates of all treatment groups within a 
set of experiments had been gathered. The rationale for this preference is presented later. (See RI 
system calibration procedure.) 
 
Assuming a 4-hole rotor is to be loaded, the counterweight/calibration cell would, by virtue of its 
being already present in rotor position 4, become cell 4, and a 7 g brass counterweight would 
already have been used to bring its mass to approximately 38.85 g, thereby rendering it 
appropriate to balance against a cell with a mass of 38.35 g to 39.35 g, according to the rule 
above. More often than not, however, cell 4 is purposefully underbalanced against its opposite, 
cell 2. As such, if cell 2 were to lose all its liquid contents of approximately (0.940 ml)L/(1.2 cm) 
in a leakage failure, its mass would decrease by approximately (0.940 g)L/(1.2 cm), assuming it 
had been loaded with aqueous sample and reference solutions. Therefore, an excessively 
unbalanced rotor condition would be unlikely to occur, as, regardless of whether cell 2 leaked, 
the difference between the masses of cells 2 and 4 should always have been well under 1 g. 
 
It is important to remember that, when screwing a counterweight intoIt is important to remember that, when screwing a counterweight intoIt is important to remember that, when screwing a counterweight intoIt is important to remember that, when screwing a counterweight into    the the the the 
calibration/counterweight cell, no part of the counterweight can be allowed to extend above or calibration/counterweight cell, no part of the counterweight can be allowed to extend above or calibration/counterweight cell, no part of the counterweight can be allowed to extend above or calibration/counterweight cell, no part of the counterweight can be allowed to extend above or 
below to housing of the cell.below to housing of the cell.below to housing of the cell.below to housing of the cell. The reason for this is that the centrifugal forces can be strong enough 
to shear off any overhanging part of the counterweight. The sheared bit of metal can then strike 
critical components of substantial mass, such as the optical periscope, at high velocity, and so 
wreak extremely expensive and fairly frightening havoc. 
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If an additional pair of counterbalanced cells is to be placed in rotor positions 1 and 3 of a 4-hole 
rotor, cell 1 should be balanced as well as possible against its opposite, cell 3. Thus, a complete 
leakage of one cell in any pair of well counterbalanced cells in rotor positions 3 and 4 would not 
necessarily cause an imbalance of more than 1 g between the opposing cells, and thus would not 
necessarily lead to an excessively unbalanced rotor condition. 
 
Rotor and XL-I loading 
 
Just before loading the reference-and-sample-filled cells into the 4-hole An-60 Ti rotor, The XL-I 
would be stopped, its vacuum would be released, the optical periscope and rotor would be 
removed, and the XL-I would be shut off entirely. If the associated PC were running, it, too, would 
be shut down at this time, and its Ethernet cable, if present, would be disconnected.  
 
Sedimentation velocity experiments would be set up using as many as 3 sample/reference pairs 
in a 4-hole An-60 Ti rotor. The cells would be placed and aligned in the 4-hole An-60 Ti rotor, 
which would have the calibration/counterweight cell already present and aligned in rotor 
position 4. (To reiterate: To counterbalance a calibration cell in position 4, a cell would have to be 
placed opposite to it, in position 2. An additional pair of cells could be placed in positions 1 and 
3.) Next, the XL-I would be turned on, the fully loaded rotor and optical periscope would be 
placed in its chamber, the chamber would be closed, and the contents of the chamber would be 
equilibrated to temperature at vacuum at 0 RPM for over an hour prior to the first step involving 
acceleration of the rotor. During temperature equilibration, the PC would be turned on, the XL-I 
operating software would be started, and the XL-I method files would be set up.  
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Overview of a basic velocity procedure 
 
Each experiment would typically consist of at least 2 parts, with the 1st conducted at 3 kRPM, and 
the 2nd conducted at X2 kRPM, where X2 ≥ 3. (At a given radial position, r, the relative centrifugal 
force, RCF, at 3 kRPM is (3/X2)2 less than that at X2 kRPM. At X2 kRPM = 60 kRPM, (3/X2)2 = 
1/400. With gE, the cgs standard acceleration due to gravity, being approximately 981 cm/s2 at 
sea level on Earth, at 60 kRPM, the RCF, which is given by (rω2/gE) × gE, ranges from 233,410 × gE 
at r = 5.8 cm, which is close to the innermost detectable point, to 289,750 × gE at r = 7.2 cm, 
which is close to the outermost detectable point. Near the approximate mid-point of r = 6.5 cm, 
the RCF = 261,580 × gE at 60 kRPM.) All parts of the experiment would typically utilise the 
interference optical system, which operates at a single wavelength, λ, that is well above from the 
absorbance maximum of most biological macromolecules. (By virtue of the interference optical 
system using a relatively long wavelength, the loss of signal to light scattering is minimised.) 
Additional parts of the experiment might also utilise the absorbance system, the available 
wavelengths of which range from λ = 800 nm to λ = 190 nm. The absorbance system can monitor 
optical density at up to two wavelengths. 
 
Prior to starting the 1st method, all common XL-I settings, all interference system settings, and all 
absorbance system settings would be checked to ensure that they matched the intended settings. 
    
Common XL-I settings 
 
The type of rotor (4-hole in this case) would be specified. The temperature would be set to the 
chosen value (20.0°C in this case). Default settings (400 RPM/s, a.k.a. “max”) would be used for 
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XL-I acceleration and deceleration. Rather than specifying a shut-down after a chosen period of 
time had elapsed, the time setting would be kept on hold. With the probable exception of the last 
method used, in the scan options, “stop XL-I after last scan” would not be selected. 
 
Common cell comment format for all scan methods 
 
For all methods, the comment line for each cell would briefly describe the sample solution, the 
reference solution, and the cell (such as, “12 mm V-CP, S” for a 1.2 cm sedimentation-velocity 
centrepiece and sapphire windows). For all methods, “counterbalance/cal” would be used in the 
comment line for cell 4 when using the 4-hole rotor, as in the case. (When using the 8-hole rotor, 
“counterbalance/cal” would be used in the comment line for cell 8, instead.) 
 
Common interference system settings 
 
At any given radial position, the interference optical system is sensitive to the total mass 
concentration of any solute for which the concentration distribution in the sample is different 
from that in the reference, as would be expected in the case of a solute found solely in the sample 
solution at the radial position in question. Adjustments of instrument parameters are generally 
needed to optimise the detection of such differences. 
 
For a solute species a, of a solute component, q, that is found in the sample solution only, and 
where the sample solution is at dialysis equilibrium with the reference solution, the noise-free 
signal at radial position rj and time tϵ is given by 

JIo,,¿cCd , Def = no,,¿ph,¿cCd, Defqr, 
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(154a) where L is the optical path-length, cq,a(rj, tϵ) is the mass/volume concentration of solute species a 
of solute component q at radial position rj of the sample solution at time tϵ, and kλ,q,a is the specific 
fringe displacement of solute species a of solute component q at the wavelength λ, of the light 
source, which is assumed to be monochromatic. (Compare this equation with Equation 4.) For 
cq,a(rj, tϵ) in g/cm and L in cm, kλ,q,a would be in fringe∙cm2/g. 
 
Assuming that the sample solution is at dialysis equilibrium with the reference solution, the total 
noise-free signal at radial position rj and time tϵ is given by 

JIocCd , Def = i i JIo,,¿cCd, Defk�
¿lm

k
lm , 

(154b) 
where nq is the number of species of component q, which is one of n components that are only 
found in the sample solution. 
 
For sample materials of a given composition, the specific fringe displacement is directly 
proportional to the refractive index increment and inversely proportional to λ (Moody, 2011: 
Equation E1). The proportionality of RIλ,q,a(rj, tϵ) to L stems from the proportionality of kλ,q,a to 
1/λ. As the refractive index increment is a function of λ, solvent properties, and such system 
properties as temperature, few experimental parameters can be altered without affecting kλ,q,a. 
 
For the Rayleigh interference (RI) optical system, the optimal laser delay settings must be 
determined for each cell of whichever rotor is used. Denoting the laser delay of cell h as LDh°, for 
an H-hole rotor, it should be found that either LDh° - LDh+1° = 360°/H or 360° + LDh° - LDh+1° = 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

334 

 

360°/H, where 1 ≤ h < H. For the comparison between cell H and cell 1, it should be found that 
either LDH° - LD1° = 360°/H or 360° + LDH° - LD1° = 360°/H. 
 
For each cell, typical settings of the interference optical system would include 0.40° for the laser 
duration, 10 for the laser gain (contrast), and 127 for the laser offset (brightness). (Though the 
laser duration, the laser gain and the laser offset can be set to different values for each cell, the 
same settings for these parameters would probably work well for each cell when all cells contain 
optically similar solutions.) By default, no blank subtraction is applied to any cell. (A basic 
description of blank subtraction can be found in the manuals that apply to the instrument.) 
 
The default settings would normally be used for the other parameters of the interference optical 
system, which relate to scaling factors for the images to be recorded. For each such image, 
horizontally oriented points (as pixel columns) can be considered those that are parallel to the 
radial axis, while vertically oriented points (as pixel rows) can be considered those that are 
perpendicular to the radial axis and perpendicular to the longitudinal axis of the cell. (Thus, the 
pixel rows lie in the plane of a cell window.) For the vertical scaling factor, 21.75 points (pixel 
rows) per fringe is the default setting. The horizontal scaling factor is equal to (rlast  - r1st)/(plast 
 - p1st), where p1st is the first point (pixel column 1, by definition) of the image, plast is the last 
point (pixel column 2020, approximately) of the image, r1st is the inside radius that is assigned to 
p1st, and rlast is the outside radius that is assigned to plast. The default setting of the inside radius is 
r1st = 5.7500 cm, and the default setting of the outside radius is rlast = 7.2140 cm. Using these 
default settings of r1st and rlast, for p1st = 1 pixel and plast = 2020 pixel, the horizontal scaling 
factor would be (rlast  - r1st)/(plast  - p1st) ≅ 7.2313E-4 cm/pixel. 
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For any given solute, the signal is a function of its specific fringe displacement (in fringe∙cm2/g), 
its concentration difference from sample to reference, and the optical path-length (Equation 
154a). As previously noted, the specific fringe displacement of each solute is proportional to its 
refractive index increment, and is thus sensitive to such variables as solvent properties, 
temperature and wavelength. Consequently, it is worth knowing the wavelength of the detection 
system. (A laser light source with a nominal wavelength of 675 nm is usually used for the RI 
optical system.) 
 
It is also worth bearing in mind that the signal-to-noise ratio will approach 1 from above as the 
optical density of the sample solution or reference solution approaches infinity. Ideally, then, at 
the wavelength of the light source of the RI optical system, the optical density of each solution 
would equal zero. Fortunately, the RI optical system is sufficiently robust to permit its use with 
solutions that exhibit fairly high optical densities at the wavelength of the light source. To achieve 
acceptable signal-to-noise ratios in such cases, however, painstaking adjustments of the laser 
delays, laser durations and laser offsets may be needed. 
 
RI system calibration procedure 
 
Prior to the first experiment in the series, the calibration/counterweight cell with a 6-gram 
counterweight (approximately 37.85 g in total) would be placed in position 4 of the 4-hole rotor, 
and an assembled but yet-to-be-filled cell (approximately 38.3 g) is placed in position 2 for a 
counterbalance. (As with any cell, even an empty cell, such as that which would be used here in 
position 2, should be properly aligned to avoid perpendicular centrifugal forces that could break 
the septum of the centrepiece.) So loaded, the rotor and the optical periscope would be 
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equilibrated at the temperature of interest (20.0°C in this case) in vacuum. Once the temperature 
and vacuum were stable, the rotor would be run at 3 kRPM. Standard XL-I procedures would then 
be used to set the radial reference positions for the RI system. 
 
The pixel column corresponding to each radial reference position, r = 5.8500 cm for the inner 
reference position, rinner, and r = 7.1500 cm for the outer reference position, router, is likely to vary 
slightly from one calibration to another. (For example, after one calibration, pixel column 138 
might correspond to rinner = 5.8500 cm, and pixel column 1936 might correspond to router = 
7.1500 cm. After another calibration, pixel column 141 might correspond to rinner = 5.8500 cm, 
and pixel column 1940 might correspond to router = 7.1500 cm.) 
 
After calibration, the empty cell in position 2 would be removed. Next, the 6 g counterweight in 
cell 4 would be gently removed and replaced with the 7 g counterweight without disturbing the 
alignment of the cell, which, unless absolutely necessary, would not be removed or repositioned 
until the completion of the entire set of related experiments. (With the 7 g counterweight in 
place, cell 4 would be expected to balance against a filled cell in position 2, provided that the cell 
had been constructed and loaded as described above.) Thus, one calibration of the RI system 
would apply to all the RI data collected in all experiments. This condition is ideal, but far from 
necessary, and if, by mistake or necessity, the calibration cell were removed or its alignment 
disturbed, the calibration procedure would be repeated. 
 
To repeat: It is important to remember that, when screwing a counterweight into the It is important to remember that, when screwing a counterweight into the It is important to remember that, when screwing a counterweight into the It is important to remember that, when screwing a counterweight into the 
calibrationcalibrationcalibrationcalibration/counterweight cell, no part of the counterweight can be allowed to extend above or /counterweight cell, no part of the counterweight can be allowed to extend above or /counterweight cell, no part of the counterweight can be allowed to extend above or /counterweight cell, no part of the counterweight can be allowed to extend above or 
below to housing of the cell.below to housing of the cell.below to housing of the cell.below to housing of the cell. The reason for this is that the centrifugal forces can be strong enough 
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to shear off any overhanging part of the counterweight. “Lasciate ogne speranza, voi ch’intrate.” 
 
Common absorbance system settings 
 
All scans involving the absorbance system would be performed in continuous mode from radial 
positions 5.8 to 7.3 cm at 0.003 cm intervals for 1 replicate at one or two selected wavelengths, 
and in no case would the “No delay calibration” option be chosen, while in each case, the “Radial 
calibration before first scan” option would be chosen. 
 
For a solute species a, of a solute component, q, that is found in the sample solution only, and 
where the sample solution is at dialysis equilibrium with the reference solution, the noise-free 
signal at radial position rj and time tϵ is given by 

zÏo,,¿cCd, Def = {o,,¿ph,¿cCd, Defqr = ôØo,,¿ + |o,,¿uv(10)õ ph,¿cCd, Defqr, 
(155a) where λ is the wavelength of the light source (assumed to be monochromatic), L is the optical 
path-length, cq,a(rj, tϵ) is the mass/volume concentration of solute species a of solute component 
q at radial position rj of the sample solution at time tϵ, ϵλ,q,a is the apparent mass extinction 
coefficient of solute species a of solute component q at wavelength λ, αλ,q,a is the part of ϵλ,q,a that 
applies to absorbance, and θλ,q,a/ln(10) is the part of ϵλ,q,a that applies to turbidity. (Compare this 
equation with Equation 154a.) For cq,a(rj, tϵ) in g/cm and L in cm, ϵλ,q,a would be in OD∙cm2/g, 
where 1 OD is the unit of optical density. 
 
Assuming that the sample solution is at dialysis equilibrium with the reference solution, the total 
noise-free signal at radial position rj and time tϵ is given by 
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zÏocCd , Def = i i zÏo,,¿cCd , Defk�
¿lm

k
lm , 

(155b) 
where nq is the number of species of component q, which is one of n components that are only 
found in the sample solution. 
 
For sample materials of a given composition, the apparent mass extinction coefficient is a 
function of λ, solvent properties, and such system properties as temperature. Thus, few 
experimental parameters can be altered without affecting ϵλ,q,a. 
 
1st scan method: Rotor speed = 3 kRPM; RI and ODλ scans of all cells 
 
The initial scan method would consist of an acceleration to 3 kRPM, followed by one set of RI 
scans of all cells (including the calibration cell in rotor position 4) and one set of ODλ (absorbance 
system) scans of all cells (including the calibration cell in rotor position 4). The results from this 
scan method are useful for damage avoidance and quality control (QC). The sort of damage 
avoided is that caused by subjecting empty or misaligned cells to AUC at rotor speeds above 3 
kRPM. The QC potential in part derives from the ability to check the data quality or radial 
calibrations before it is too late to do anything but abort an experiment that could have been 
salvaged by adjusting the settings of the detection systems and/or repeating radial calibrations. 
The QC potential also derives from the forensic value of the data collected. 
 
The RI scans, absorbance system calibration and ODλ scans for a fully loaded 4-hole rotor might 
take approximately 20 minutes to complete if the ODλ scans are conducted at just 1 wavelength. 
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(The RI scans should take less than 1 minute. The subsequent baseline, delay and radial 
calibrations of the absorbance system could take up to 12 minutes at 3 kRPM. The subsequent 
ODλ scans of cells 1 to 4 would probably take approximately 7 minutes at 3 kRPM.) 
 
The method would be named 3x*mon.scn, where “3” would refer to the rotor speed (3 kRPM), “x” 
would refer to the extra scans (ODλ in addition to RI), “mon” would refer to the month (“jan” for 
January, etc) within which the method was run, and “*” would be the date of the day of the month 
when the method was used. (Method file names are limited to 8 characters, not including the .scn 
suffix.) 
 
After the scans were completed, and assuming that a single wavelength were used in the ODλ 
scans, the XL-I would be left running at 3 kRPM until t1 = 30 minutes had elapsed since the start 
of rotor acceleration from 0 RPM. At the t1 = 30 minute mark, the 2nd scan method would be 
started. 
 
2nd scan method: 1 RI scan per minute of all cells except cell 4 for t2 minutes at X2 kRPM 
The next scan method would consist of N2 sets of RI scans of all filled cells at X2 kRPM. This 
method would be started immediately after t1 = 30 minutes had elapsed since the start of rotor 
acceleration from 0 RPM. 
 
The “time between scans” would be set to 1 minute, which would ensure that exactly 1 minute 
would elapse between the start of one set of scans and the start of the next, provided that each 
set of scans was completed in 1 minute or less. (As each set of RI scans normally takes less than 1 
minute, the method should take exactly t2 = N2 minutes to complete.) 
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The method would be named X2k*mon.scn, where “X2k” refers to the rotor speed (X2 kRPM), 
“mon” would refer to the month within which the method was run, and “*” would be the date of 
the day of the month when the method was used. 
 
In the protocol for the simulated AUC described here (DATADATADATADATA) and in previous works (Moody, 
2012a and 2012b), X2 would equal 60, and N2 would equal 116. If, as specified, exactly1 minute 
elapsed between the start of one set of scans and the start of the next, then, with N2 = 116, t2 
would equal 116 minutes. 
 
3rd scan method: Rotor speed = X3 kRPM; RI and ODλ scans of all filled cells 
 
A final velocity method would consist of (up to) N3 sets of scans at X3 kRPM, where each set 
would consist of RI scans of all filled cells, followed by ODλ scans of all filled cells. This method 
would start immediately after the last iteration of the 2nd scan method was done, which would be 
after a time of approximately (t1 + t2) had elapsed since the start of rotor acceleration from 0 
RPM. 
 
The “time between scans” would be set to 10 minutes. (With the “time between scans” set to 10 
minutes, exactly 10 minutes would elapse between the start of one set of scans and the start of 
the next, provided that each set of scans had been completed in 10 minute or less. Thus, 10 
minutes would be the minimum time between the start of one set of scans and the start of the 
next.) 
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After the first set of RI scans, the delay calibration of the absorbance system would typically 
require less than a minute to complete, and the radial calibration of the absorbance system would 
typically require less than 4 minutes to complete, after which, the first set of ODλ scans would 
begin. Subsequent sets of RI and ODλ scans require less time than the first set, as the calibration 
steps only occurs prior to the first ODλ scan of any given method. The method might be stopped 
before completion, either after running overnight, or after just a few sets of scans. 
 
The method would be named X3x*mon.scn, where “X3” would refer to the rotor speed (X3 kRPM), 
“x” would refer to the extra scans (ODλ in addition to RI), “mon” would refer to the month within 
which the method was run, and “*” would be the date of the day of the month when the method 
was used. 
 
In the protocol for the simulated experiment described here, X3 would equal 60, and N3 would 
equal 104. If, as specified, exactly10 minutes elapsed between the start of one set of scans and the 
start of the next, then, with N3 = 104, t3 would equal 1,040 minutes. 
 
Shut down 
 
Scanning would be stopped (if it hadn’t already stopped automatically), the XL-I would be 
stopped (if it hadn’t already stopped automatically), its vacuum would be released (which could 
not occur until the diffusion pump had had time to cool), the rotor chamber would be opened, the 
optical periscope and rotor would be removed, the rotor chamber would be closed, the XL-I 
operating software would be closed, and the XL-I would be shut off entirely. The data collected 
would be zipped, and the output would be split into volumes of limited size (such as 1 Mb) to 
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ensure that the resulting files were not too big to be e-mailed. The Ethernet cable would be 
connected to the PC, the browser (very likely Opera, as of 2014, if the operating system is 
Windows 95) would be opened, and an accessible e-mail system would be opened. The zipped 
data would be saved as a draft, or would be sent if addressed to anyone beyond the sender. 
(Some XL-Is are operated via PCs that do not support CD or USB devices. Such XL-Is may have an 
RI camera system that is incompatible with computer hardware that is sufficiently new to 
support such devices. In such cases, the use of newer computer hardware that does supports CD 
or USB devices would require an upgrade to the RI camera system. As of 2012, the cost of such an 
upgrade was approximately 30,000 CAD. The cost of the upgrade is such that the older camera 
system, and thus an older PC, may still be found on an older XL-I.) 
 
Cell cleaning 
 
Good eye protection, such as goggles, and chemical-resistant gloves that do not leak would be 
especially important in this step. If disposable gloves were used, one would want to make sure 
that they were of good quality, and had not become brittle with age. Wearing two pairs of gloves 
would provide an extra margin of safety, if doing so would not unduly impair dexterity. 
After AUC, the reference and sample solutions would be removed from each cell by the same type 
of syringe previously used to load them. Care should be taken to avoid scratching the 
centrepieces or windows with the needle! (See the Cell loading section, above.) This process 
permits the salvaged solutions to be saved for further analysis. The cells would then be 
disassembled, and any residual material left on the sapphire windows and epon centrepieces 
would be removed by washing each of these parts one at a time, by hand, three times. The first 
and third washes would be with water (distilled and deionised or the like, such as Milli-Q), and 
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the second wash would be with an appropriate alcohol (reagent grade methanol or ethanol). 
Laboratory squirt bottles may be used to direct a stream of liquid at each part in all washes with 
water. As alcohols leach plasticisers from laboratory squirt bottles, a glass dropper is a better 
choice for directing such liquids at each part. Washing at a short height above an appropriately 
sized container, such as a medium-sized weighing boat, would collect the washing fluid and 
would gently catch any part that might be dropped. In the case of the sapphire windows, the flat 
surfaces would be rubbed with the thumb and forefinger of a clean, nitrile-gloved hand while 
each washing solution was applied. After the third wash, all parts would be air-dried while set 
edge-wise on a stack of about 6 Kimwipes (or similar tissue paper) on a clean, dry surface. 
(Before setting any cylindrical parts on their curved surfaces, set up physical barriers to prevent 
the parts from rolling! Pyrex baking dishes or the like can provide both barriers to rolling and the 
clean, dry surfaces on which to stack Kimwipes.) After drying, the parts would be inspected for 
cleanliness, and, if necessary, washed again. 
 
Other cell parts besides the windows and centrepieces would be cleaned, as needed, using water 
and either methanol or ethanol, but the last wash for any metal part would always be with 
methanol or ethanol. Any of these washed parts would also be air dried. 
 
RANDOMNESS AS A FUNCTION OF THE TOTAL POPULATION OF OBSERVATIONS RANDOMNESS AS A FUNCTION OF THE TOTAL POPULATION OF OBSERVATIONS RANDOMNESS AS A FUNCTION OF THE TOTAL POPULATION OF OBSERVATIONS RANDOMNESS AS A FUNCTION OF THE TOTAL POPULATION OF OBSERVATIONS     
 
The general approach of the analysis was summarised, and the main result was given, in an 
earlier section (RANDOM NOISERANDOM NOISERANDOM NOISERANDOM NOISE). In this section, results that are fairly consistent with Inequality 
23 are presented. Further details regarding data generation and some results of data analysis 
(One-way analyses of variance (ANOVA), Bonferroni adjusted t-test (2-tailed), and confidence 
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intervals about mean values) are also included in this section. 
 
Regarding Equations 21 and 22, it might be said that, given an infinite amount of noise in the 
form of real, random numbers that are normally distributed about a mean of 0 with a standard 
deviation of 1, an infinite amount of information would emerge if, by dint of an infinite effort 
lasting forever, the noise were placed in ascending order, such that the value obtained by 
applying the Cumulative Distribution Function (Equation 16) to each random number would be 
equal to, or at least infinitely difficult to distinguish from, the normalised index value (Equation 
15) by which that random number would be enumerated if it were possible to enumerate an 
infinite number of anything. 
 
For a population of m normally distributed random numbers, there are m! equally probable 
orders in which they may be found, with the probability of finding them in any particular order 
being 1/m!. Thus, as the population of normally distributed random numbers approaches 
infinity, the likelihood of those numbers appearing in any given order approaches zero. By 
infinitely remote chance, then, an infinitely large set of normally distributed random numbers 
could, prior to any sorting, appear in some particular order, such as ascending order, but betting 
on that set of numbers coming up in any particular order would be tantamount to playing the 
worst lottery in the universe. Such a lottery might ultimately be the only game in town, however, 
and would almost certainly have been played by the Schlemiel of Fortune of whom Mickey Katz 
(1957) sang, so why not you? Who or what you are, anyway, might next be called into question, 
but as one answer is likely to be as baseless as any other, no digression on that point need be 
heaped on what has already become “a crushing concatenation of detail,” which is to say, a 
megillah (Rosten, 2001), here. Speaking of which, the method used to construct each of the 
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previously mentioned five megillahs (THE 5 MEGILLAHSTHE 5 MEGILLAHSTHE 5 MEGILLAHSTHE 5 MEGILLAHS) is described next. 
 
Four files, Origink,1, Origink,2, Origink,3 and Origink,4, each consisting of 9,750,000 normally 
distributed random numbers generated by Origin 6.0, were adjusted as per the data shown in 
Figure 1 to obtain for new files, randomk,1, randomk,2, randomk,3 and randomk,4, respectively, so 
that, for the data in each new file, the mean, μ, was rendered as close as possible to 0, and the 
standard deviation, σ, was rendered as close as possible to 1. Further manipulations on 
randomk,1, randomk,2, randomk,3 and randomk,4 were carried out by functions within a C++ 
program that was compiled using Borland C++ Builder 6.0. The precision of all the data within 
the C++ program was that of a long double, which, upon conversion from binary to decimal, 
resulted in data with 18 significant figures. (Data exported from Origin had just 13 significant 
figures, but the various operations performed by the C++ program led, ultimately, to data with 
18 significant figures of which the last 5 did not merely consist of padding with zeroes.) 
 
Within the C++ program, the adjusted values of the four files, randomk,1, randomk,2, randomk,3 
and randomk,4, were used to create four lists. The first list, Pforwardk, was equated to the values 
of randomk,1 in their original order. The second list, Nforwardk, was equated to the negated 
values of randomk,2 in their original order. The third list, Preversek, was equated to the values of 
randomk,3 in reverse order. The fourth list, Nreversek, was equated to the negated values of 
randomk,4 in reverse order. 
 
The values of Pforwardk, Nforwardk, Preversek and Nreversek were shuffled to create a new list, 
Shufflek, such that a list of every fourth value of Shufflek would equal Pforwardk if started from 
the first value of Shufflek, a list of every fourth value of Shufflek would equal Nforwardk if started 
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from the second value of Shufflek, a list of every fourth value of Shufflek would equal Preversek if 
started from the third value of Shufflek, and a list of every fourth value of Shufflek would equal 
Nreversek if started from the fourth value of Shufflek. The mean and standard deviation of the 
39,000,000 values of Shufflek were calculated, the mean was subtracted from each individual 
value, and each resulting difference was divided by the standard deviation to obtain a normalised 
list, Normalk. The mean, the standard deviation, and the extrema of Normalk were then 
determined and recorded. 
 
The above process was carried out five times to obtain, for each value of k within 1 ≤ k ≤ 5, a 
unique set, Normalk, of 39,000,000 normally distributed random numbers. Table 42 gives the 
mean value, μ, the standard deviation, σ, and the extrema of each set, Normalk. 
 
K minimum value of Normalk standard deviation of Normalk mean value of Normalk maximum value of Normalk    
1 -4.925735296127199250 9.999999999999999445E-1  4.637891633241242318E-21  4.926383972328482432 
2 -4.922139761541072794 9.999999999999999445E-1  9.527262570387712150E-21  4.928536909747558450 
3 -4.927430865243476314 9.999999999999999445E-1 -4.627784922989778083E-21  4.927125052925080668 
4 -4.926041521708016880 1.000000000000000000 -3.976924458818877393E-21  4.924238725852489045 
5 -4.926612489984357333 1.000000000000000111 -6.091285495499839578E-21 
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 4.926477761141594544 Table 42. The mean value, μ, the standard deviation, σ, the minimum value and the maximum of 
each set of 39,000,000 normally distributed random numbers, Normalk. As 1 ≤ k ≤ 5, there are as 
many sets of 39,000,000 normally distributed random numbers as there are megillahs (Rosten, 
2001). 
 
Concatenated, the five megillahs, Normalk from k = 1 to k = 5 (Table 42), form Normal, which 
consists of 195,000,000 normally distributed random numbers, 64 subsets of which constitute 
the treatment groups (Table 43) used to quantify the extent to which, as the population of 
random numbers per replicate increases, the normalised index value (Equation 15) approaches 
the value obtained by applying the Cumulative Distribution Function (Equation 16) to each 
random number. 
 
The 195,000,000 normally distributed random numbers of Normal are divided into a number of 
equally populated subsets that constitute the replicates data sets of a treatment group, within 
which each value of Normal appears once. Thus, as a whole, each treatment group is identical 
with Normal, and one treatment group is distinguished from all others solely by the number of its 
equally populated replicates. The original order of the values of each replicate is identical to the 
order in which they appear within Normal, within which, the last value of one replicate would be 
followed by the first value of the next replicate, if any. As such, first value of the first replicate of a 
treatment group is always the first value of Normal, and the last value of the last replicate of a 
treatment group is always the last value of Normal. 
 
As previously described (THE 5 MEGILLAHSTHE 5 MEGILLAHSTHE 5 MEGILLAHSTHE 5 MEGILLAHS), the 64 treatment groups are indexed by i, and 
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within a given treatment group, there are ni replicate data sets that are indexed by h. Within each 
replicate, h, of treatment group i, there is a population of mi random variables that are denoted as 
Ðà¢,B when in their original order given by the integral index, ÊA , for which 1 ≤ ÊA  ≤ mi. When 
placed in ascending order, the mi random variables within replicate h of treatment group i are 
denoted as Ðá¢,B, and their place in the ascending order is given by the integral index ÌA , for which 
1 ≤ ÌA  ≤ mi. As defined by Equations 14 and 15, respectively, the normalised index of ÊA  is given 
by Ê�¢ = ÊA (ËA + 1)Â , and the normalised index of ÌA  is given by Ì�¢ = ÌA (ËA + 1)Â . Thus, 0 < Ê�¢  
< 1, 0 < Ì�¢  < 1, and for any permitted value of mi, the mean of all Ê�¢  values and the mean of all 
Ì�¢  values are both equal to 0.5. 
 
The defining parameter of each treatment group i, is the population, mi, of each replicate, h. 
Within a given treatment group, i, the mi values of Ì�¢  are identical for each replicate, h, but each 
replicate comprises a unique set of mi values of Ðá¢,B that increase monotonically as Ì�¢  increases, 
assuming mi > 1. Thus, for mi > 1, the set of mi values of CDF(Ðá¢,B) (Equation 16) will increase 
monotonically as Ì�¢  increases. As with the data shown in Figure 1, within replicate h of 
treatment group i, the set of ordered pairs given by (Ðá¢,B,CDF(Ðá¢,B)) is not identical to the set of 
all ordered pairs given by (Ðá¢,B, Ì�¢), but according to the hypothesis being tested via the 64 
treatment groups of Table 43, the two sets of ordered pairs should approach a state of 
indistinguishability as mi increases to very large values, in which case, in the limit as mi 
approaches infinity, the set of all Ì�¢  values and the set of all CDF(Ðá¢,B) values should share the 
same range. 
 
For each treatment group, i, n1/mi is equal to the number of replicates, ni, and is also equal to the 
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expected number of coincidences in which Ð[à¢lá¢],B = Ð[á¢là¢],B, where Ð[à¢lá¢],B = Ð[á¢là¢],B 
somewhat more compactly represents an instance for which Zi = ζi when Ðà¢,B = Ðá¢,B. (The 
random variables are denoted as Ðà¢,B when in their original order given by the integral index Zi, 
and the random variables are denoted as Ðá¢,B when in their ascending order given by the integral 
index ζi.) As a population of mi normally distributed random numbers can be ordered in any of 
mi! equally probable ways, the frequency of coincidences in which Ð[à¢lá¢],B = Ð[á¢là¢],B should 
approach an average value of 1/mi as the number of replicate data sets, ni, approaches infinity. 
 
Table 43 shows the result, κi, which denotes the total number of actual coincidences in which 
Ð[à¢lá¢],B = Ð[á¢là¢],B within treatment group i, for which the frequency of such coincidences is 
equal to κi/n1. Using all the κi values from Table 43, log10(κi) plotted against log10(ni) in Figure 
83a, a linear regression fit (Equation 156) yields a y-intercept close to 0 and a slope close to 1 
(Table 44), as would be expected for κi values that are close to n1/mi. Figure 83b shows that the 
magnitude of the residuals (Equation 157) tends to increase as ni decreases, especially from n33 
= 30,000 to n64 = 5. Figure 83c further illustrates the increasing deviation of κi from its expected 
value of n1/mi as ni decreases. When, as in Figure 84a, only the data from n32 = 32,500 to n1 = 
39,000,000 are included in the plot of log10(κi) versus log10(ni), a linear regression fit (Equation 
156) yields results (Table 45; Figure 84b) that are even more consistent with those that would 
be expected for κi values that are close to n1/mi. 
 
Table 43 also shows the parameters, mi and ni, and the descriptive statistics, Ai and σi. Equations 
17 through 19 define Ai, the mean of all absolute differences within treatment group i, and in the 
context of Table 43, σi is the standard deviation of those absolute differences about Ai. In the limit 
as ni approaches infinity, Equation 20 yields 0.25 exactly as the expectation value of Ai=1 for mi=1 
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= 1, while Equations 21 and 22 yield 0 exactly as the expectation value of Ai≡∞ as mi≡∞ 
approaches infinity. According to Inequality 23, for 1 ≤ mi, in the limit as ni approaches infinity, Ai 
≥ Aref/mi0.5, where Aref, being defined as limk¸→Ú Ñm, is equal to 0.25 exactly (Equation 20). 
 

i mi ni Ai σi κi 1 1 195,000,000 2.4999832837112E-1 8.7077841760457E-7 195,000,000 2 2 97,500,000 1.9757428108351E-1 1.8635324945893E-5 97,492,712 3 3 65,000,000 1.6798042603626E-1 2.6474595833294E-5 64,998,153 4 4 48,750,000 1.4851594751065E-1 2.5757421659871E-5 48,761,184 5 5 39,000,000 1.3443118968412E-1 4.8807897820465E-5 39,007,773 6 6 32,500,000 1.2368015890910E-1 2.9544023082796E-5 32,525,548 7 8 24,375,000 1.0811685932456E-1 3.4882947172934E-5 24,381,747 8 10 19,500,000 9.7282895502670E-2 3.9905732124972E-5 19,494,172 9 13 15,000,000 8.5755339287675E-2 4.5985758313039E-5 14,995,015 10 16 12,187,500 7.7525615398701E-2 4.9428854971516E-5 12,180,765 11 20 9,750,000 6.9507512834572E-2 4.5400440093546E-5 9,750,304 12 25 7,800,000 6.2313819345222E-2 4.6595967916773E-5 7,801,872 13 26 7,500,000 6.1109546878366E-2 5.4507593003812E-5 7,494,904 14 30 6,500,000 5.6947256211710E-2 4.5710359822824E-5 6,500,338 15 39 5,000,000 5.0039874443815E-2 4.7568604318033E-5 4,998,512 16 50 3,900,000 4.4252399080256E-2 6.4222941242156E-5 3,901,293 17 75 2,600,000 3.6168638701312E-2 8.1593186783161E-5 2,595,018 18 100 1,950,000 3.1310043135025E-2 1.0529491581071E-4 1,949,443 19 150 1,300,000 2.5544016580830E-2 1.2929588618458E-4 1,299,112 20 200 975,000 2.2107654677519E-2 1.6330054423301E-4 976,963 21 300 650,000 1.8048206180518E-2 2.1230027777531E-4 649,370 22 375 520,000 1.6139319626739E-2 2.3527212739276E-4 520,288 23 500 390,000 1.3959563633666E-2 2.7881214747286E-4 390,258 24 750 260,000 1.1349550386867E-2 3.1692866223891E-4 260,215 25 1,000 195,000 9.8519970889088E-3 3.6386058140381E-4 195,065 26 1,250 156,000 8.8413410086975E-3 3.9282464590836E-4 156,310 27 1,500 130,000 8.0987901167207E-3 4.2064017173392E-4 130,164 28 2,000 97,500 7.0839068722909E-3 4.5708392972472E-4 97,727 29 3,000 65,000 5.8680722742208E-3 4.9852599370067E-4 64,745 30 3,750 52,000 5.2776131419042E-3 4.9568509328944E-4 52,174 31 5,000 39,000 4.5630927623009E-3 4.7143032180050E-4 38,988 32 6,000 32,500 4.1527430956351E-3 4.5098763135801E-4 32,558 



Distinguishing hypothetical systems of PS beads by g(s*) analysis of simulated AUC data to which noise has been added, 

copyright March 26, 2014 (CIPO 1112049), Thomas P. Moody, MoodyBiophysicalConsulting.blogspot.com 

 

351 

 

33 6,500 30,000 3.9832507768225E-3 4.3306476941954E-4 29,960 34 7,500 26,000 3.6945928028265E-3 4.4125922396121E-4 25,908 35 10,000 19,500 3.1510321755269E-3 4.3907644157880E-4 19,403 36 15,000 13,000 2.2960493397602E-3 3.0611572982081E-4 13,139 37 20,000 9,750 1.7188937905416E-3 1.8354729567972E-4 9,683 38 30,000 6,500 1.3920754637913E-3 6.1685533796389E-5 6,696 39 50,000 3,900 1.0096914278491E-3 4.6743490530242E-5 3,843 40 75,000 2,600 7.8681424888761E-4 4.0625299505745E-5 2,720 41 100,000 1,950 6.6946827360550E-4 3.9663665394563E-5 1,970 42 120,000 1,625 6.1555758475969E-4 3.5851513471463E-5 1,552 43 150,000 1,300 5.3497934266620E-4 3.0690074070817E-5 1,379 44 200,000 975 4.5117781214606E-4 3.2381842716981E-5 958 45 250,000 780 4.1306188430356E-4 2.9040751748916E-5 769 46 300,000 650 3.7994098614290E-4 2.8921684491128E-5 652 47 375,000 520 3.4380214399073E-4 2.9033617836531E-5 489 48 500,000 390 3.0971634632948E-4 3.2895805495724E-5 409 49 600,000 325 2.9128713872930E-4 3.5830995819049E-5 295 50 750,000 260 2.6986426599182E-4 3.3986384573881E-5 266 51 1,000,000 195 2.5193043199051E-4 3.3833343638270E-5 184 52 1,300,000 150 2.3489173342152E-4 3.4326467276275E-5 173 53 1,500,000 130 2.3693845515043E-4 3.6999336729738E-5 133 54 1,950,000 100 2.1411704553917E-4 2.9648183076820E-5 84 55 2,437,500 80 2.0444563000082E-4 2.7747498791131E-5 87 56 3,000,000 65 2.0557158863560E-4 3.4435172345880E-5 53 57 3,900,000 50 1.6655217989345E-4 9.9897723488307E-6 43 58 4,875,000 40 1.4873435409885E-4 3.6149787903437E-6 46 59 6,500,000 30 1.4195530630420E-4 1.1468796733719E-6 27 60 7,800,000 25 1.4561487958088E-4 1.6266842204806E-6 20 61 9,750,000 20 1.4442831300069E-4 2.0293709979472E-6 20 62 13,000,000 15 1.4030723742356E-4 4.4992018738476E-7 13 63 19,500,000 10 1.4039322734346E-4 3.8369527763469E-7 6 64 39,000,000 5 1.3985991037397E-4 4.2128548740653E-7 4 Table 43. Selected parameters and results for the g = 64 treatment groups indexed by i. The 
tabulated parameters are ni , which is the number of replicates within treatment group i, and mi, 
which is the population of random variables per replicate within treatment group i. Among the 
64 treatment groups, the number of replicates ranged from a high of ni=1 = 195,000,000 at mi=1 
= 1 to a low of ni=64 = 5 at mi=64 = 39,000,000. For any given treatment group, i, the relationship 
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between ni and mi is given by ni = n1/mi. The tabulated results include κi, which is the total 
number of coincidences in which Ð[à¢lá¢],B = Ð[á¢là¢],B within treatment group i. In the limit as ni 
approaches infinity, κi is expected to approach n1/mi, which is also equal to ni. Another tabulated 
result consists of the descriptive statistic Ai, which is the mean of all absolute differences within 
treatment group i (Equations 17 to 19). The remaining tabulated result is the descriptive statistic 
σi, which, in the context of this table, is the standard deviation of the absolute differences about Ai 
within treatment group i. The values of Ai and σi are shown at truncated precision. 
 
The functional relationship between ni and coincidences in which Ð[à¢lá¢],B = Ð[á¢là¢],B  
 
The equation for the linear regression fit of log10(κi) versus log10(ni) can be written as 

logmx(�A) = )logmx(�x) ± �logmx(�x)�¤ë* + )Δ�A ΔvAÂ ± [Δ�A ΔvAÂ ]¤ë* logmx(vA), 
(156) 
where log10(κ0) is the y-intercept, [log10(κ0)]se is the standard error in the y-intercept, Δκi/Δni is 
the slope and [Δκi/Δni]se is the standard error in the slope. Thus, for a given value of i, the 
residual, being equal to the difference between the actual result and the central value obtained 
from the fit (Equation 156 with [log10(κ0)]se = 0 and [Δκi/Δni]se = 0), is given by 

�A = logmx(�A) − [logmx(�x) + (Δ�A ΔvAÂ ) logmx(vA)]. 
(157) 
Table 44 shows the values of the parameters of Equation 156 in the case of logmx(�A) versus 
logmx(vA) data from all g = 64 groups being fit, results for which are shown in Figures 83a and 
83b. 
 
On rearrangement, Equation 156 yields κi = c�x10±����¸; �;�l�fcvA��¢ �k¢Â ±[��¢ �k¢Â ]l�f, where κ0 = 
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10���¸;(�;) would be the fitted value of κi at ni = n0 = 1. A fit of κi versus ni in the case of an exact 
conformity to the expected result yields the expected values of Δκi/Δni and κ0. If κi were equal to 
its expected value of n1/mi = ni at all values of ni, and if [log10(κ0)]se and [Δκi/Δni]se were both 
equal to 0, Δκi/Δni would have to equal 1, and therefore κ0 would also have to equal 1, from 
which it follows that m0, being the value of mi at ni = n0 = 1, would have to equal n1. 
 
With the population of data equal to Npop, the upper (1 - α)% confidence limit is given by 

logmx(�A) = �logmx(�x) + Dc[Ø 2Â ], p>�L� − 2qf�logmx(�x)�¤ë�
+ �Δ�A ΔvAÂ + Dc[Ø 2Â ], p>�L� − 2qf[Δ�A ΔvAÂ ]¤ë� logmx(vA), 

(158a) 
and the lower (1 - α)% confidence limit is given by 

logmx(�A) = �logmx(�x) − Dc[Ø 2Â ], p>�L� − 2qf�logmx(�x)�¤ë�
+ �Δ�A ΔvAÂ − Dc[Ø 2Â ], p>�L� − 2qf[Δ�A ΔvAÂ ]¤ë� logmx(vA), 

(158b) 
where t([α/2],[Npop - 2]) is the upper critical value of Student’s t-distribution at [Npop - 2] degrees 
of freedom and a significance level of [α/2] for a two-sided test. 
 
Parameter central value standard error 
y-intercept log10(κ0) = -4.07348E-2 [log10(κ0)]se = 1.07303E-2 
Slope Δκi/Δni = 1.00692 [Δκi/Δni]se = 2.15960E-3 
Table 44. Values of the parameters of Equation 156, which applies to the linear regression fit of 
log10(κi) versus log10(ni), in the case of data from all g = 64 groups (Table 43) being fit. The 
sample correlation coefficient was R = 0.99986 (with less than a probability of 0.0001 that R is 
really zero), and the standard error of estimate obtained from the residuals (Equation 157) was 
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σε = 3.72273E-2. With Npop = g = 64 (Table 43) and with α = 0.05, t([α/2],[Npop - 2]) = 1.99897 
was used to calculate the upper and lower (1 - α)% confidence limits (Equations 158a and 158b). 
 

 
Figure 83a. The linear regression fit (⎯⎯⎯⎯) for the complete set of log10(κi) versus log10(ni) data 
(), along with the upper (⎯⎯⎯⎯) and lower (⎯⎯⎯⎯) 95% confidence limits (Equations 158a and 
158b) of that fit (Equation 156). The double-logarithmic presentation ensures that each data 
point is clearly visible in this figure and the figure that follows. Table 44 shows the parameters of 
the fit, for which data from all g = 64 groups in Table 43 were included. Within treatment group i, 
κi is the total number of coincidences in which Ð[à¢lá¢],B = Ð[á¢là¢],B, and ni is the number of 
replicates. The expected value of κi is n1/mi,. As Figure 83b shows, the residuals (Equation 157) 
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are biased and heteroscedastic. As Figure 83c shows, however, κi lies well within 1% of n1/mi for 
ni > n33 = 30,000, despite its trend toward increasing deviation from n1/mi as ni decreases from 
n64 to n1. 
 

 
Figure 83b. The residuals (Equation 157), εi = κi – [log10(κ0) + (Δκi/Δni)log10(ni)], from the 
linear regression fit (Equation 156), shown in Figure 83a, of the complete set of log10(κi) versus 
log10(ni) data. The residuals are biased and heteroscedastic, but within n32 = 32,500 to n1 = 
39,000,000, they lie within a range, -0.018 < εi < 0.013, that is approximately tenfold narrower 
than the -0.19 < εi < 0.10 range found within n64 = 5 to n33 = 30,000. 
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Figure 83c. The deviation of κi from the expected value of n1/mi = ni, shown as (100%)(ni - κi)/ni 
() versus ni, which is placed on a log10 scale. From n64 = 5 to n33 = 30,000, values of 
(100%)(ni - κi)/ni may be unbiased, but they are clearly heteroscedastic, ranging from -15.333% 
to 40% as ni approaches n64 = 5 from above, and lying within -4.61538% to 4.49231% as ni 
approaches n33 = 30,000 from below. For ni > n33 = 30,000, (100%)(ni - κi)/ni values appear to 
be unbiased, but they are still heteroscedastic, ranging from -0.33462% to 0.39231% as ni 
approaches n32 = 32,500 from above, and lying within -0.07861% to 0.05526% as ni approaches 
n1 = 39,000,000 from below. 
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Parameter central value standard error 
y-intercept log10(κ0) = 8.94150E-4 [log10(κ0)]se = 5.83660E-4 
Slope Δκi/Δni = 0.99987 [Δκi/Δni]se = 9.05893E-5 
Table 45. Values of the parameters of Equation 156, which applies to the linear regression fit of 
log10(κi) versus log10(ni), in the case of data from groups i = 1 to i = 32, within which ni ranges 
from n32 = 32,500 to n1 = 39,000,000 (Table 43), being fit. The sample correlation coefficient, R, 
was indistinguishable from 1 (with less than a probability of 0.0001 that R is really zero), and the 
standard error of estimate, σε, obtained from the residuals (Equation 157) was 5.54797E-4. With 
Npop = 32 and with α = 0.05, t([α/2],[Npop - 2]) = 2.04227 was used to calculate the upper and 
lower (1 - α)% confidence limits (Equations 158a and 158b). 
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Figure 84a. The linear regression fit (⎯⎯⎯⎯) for a truncated set of log10(κi) versus log10(ni) data 
(), along with the upper (⎯⎯⎯⎯) and lower (⎯⎯⎯⎯) 95% confidence limits (Equations 158a and 
158b) of that fit (Equation 156). As with Figures 83a and 83b, the double-logarithmic 
presentation ensures that each data point is clearly visible in this figure and the figure that 
follows. The lines for the fit and the confidence limits appear to be superimposed at the scale 
shown. The truncated set only included data from groups i = 1 to i = 32 of Table 43. Table 45 
shows the parameters of the fit to that truncated data. As Figure 84b shows, the residuals 
(Equation 157) are heteroscedastic but largely unbiased. 
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Figure 84b. The residuals (Equation 157), εi = κi – [log10(κ0) + (Δκi/Δni)log10(ni)], from the 
linear regression fit (Equation 156), shown in Figure 84a, of the truncated set of log10(κi) versus 
log10(ni) data. 
 
The rarity of coincidences in which CDF(Ðá¢,B) and Ì�¢  are exactly equal  
 
The set of all real numbers includes the set of all rational numbers and much else, and thus there 
is almost no chance that an exact equality of CDF(Ðá¢,B) to Ì�¢  would ever occur, though the two 
sets of values should become increasing indistinguishable as mi approaches infinity. Where both 
the real values of CDF(Ðá¢,B) and the rational values of Ì�¢  are approximated as decimal 
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expansions, such indistinguishability might largely be an artefact of insufficient precision. Given a 
finite precision of the decimal expansions, at some point as mi approaches infinity, it would even 
become impossible to distinguish either individual CDF(Ðá¢,B) values within clusters of 
consecutive CDF(Ðá¢,B) values or individual Ì�¢  values within clusters of consecutive Ì�¢  values. 
Despite such finite precision favouring the appearance of indistinguishability where none should 
be found, not even one exact equality of CDF(Ðá¢,B) to Ì�¢  is found among the 64 treatment groups 
listed in Table 43. 
 
Values of Ai for finite values of mi that are greater than 1 
 
As with the plots of κi and εi versus ni (Figures 83 and 84), double-logarithmic plots are used to 
present Ai, the mean of all absolute differences within treatment group i, versus mi. In the first 
instance, all of the Ai versus mi data of Table 43 are presented as log10(Ai) versus log10(mi) in 
Figure 85. For each of the treatment groups listed in Table 43, nimi = n1, where ni is the number 
of replicates within treatment group i, and n1 = ni=1. Thus, as mi increases from its lowest value of 
mi=1 = 1, ni decreases from its highest value of ni=1 = 195,000,000. It might be expected, then, 
that as mi increases, ni would eventually reach such low values that the results might cease to 
follow Inequality 23, according to which, in the limit as ni approaches infinity, Ai ≥ Aref/mi0.5, 
where Aref = limk¸→Ú Ñm = 0.25 (Equation 20). Furthermore, even though Equations 21 and 22 
yield 0 for the expected value of Ai≡∞ as mi≡∞ approaches infinity, as mi increases, the 
accompanying decrease in ni might yield results that do not clearly show a trend in Ai toward 
zero. Such effects of low ni values at high mi values are evident in Figure 85. 
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Figure 85. The set of all log10(Ai) versus log10(mi) data () obtainable from the Ai versus mi data 
of Table 43, and the line (⎯⎯⎯⎯) obtained by plotting log10(0.25/mi0.5) against log10(mi). This line 
is the logarithmic form of the line pertaining to Inequality 23, which states that, for 1 ≤ mi, in the 
limit as ni approaches infinity, Ai ≥ Aref/mi0.5, where Aref, being defined as limk¸→Ú Ñm, is equal to 
0.25 (Equation 20). Presumably due to the relatively low ni values, Inequality 23 breaks down 
among roughly the same treatment groups, i = 33 to i = 64, that show the greatest deviation of κi 
from the expected value of n1/mi = ni in Figure 83. For treatment groups i = 33 to i = 64, ni 
ranges from n33 = 30,000 to n64 = 5, while mi ranges from m33 = 6,500 to m64 = 39,000,000. 
 
To identify which Ai values closely follow a functional trend with mi and which do not, the 
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difference, log10(Ai) - log10(0.25/mi0.5), was plotted against log10(mi). The results, presented in 
Figure 86, can be interpreted as showing that log10(Ai) increases with log10(mi) in the pattern of 
an exponential decay, but only where mi is relatively low, so the ni is relatively high. 
 

 
Figure 86. The difference, log10(Ai) - log10(0.25/mi0.5), versus log10(mi). Circles indicate the 
treatment groups i = 1 to i = 32, for which Inequality 23 holds consistently (Figure 85). Filled 
circles indicate of treatment groups i = 1, i = 8, i = 18 and i = 25, which are subjected to further 
statistical analysis in the next section, Pair-wise comparisons of the Ai values for the 4 treatment 
groups with ni values ≥ 195,000. The symbol ⨉ is used for treatment groups i = 33 to i = 64, for 
which Inequality 23 does not hold consistently (Figure 85). Data indicated by the symbols ⨉, � 
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or �, are deemed to behave irregularly, relative to the trend observed where mi is low. Data that 
follow the trend established where mi is low, and thus, where ni is high, are indicated by the 
symbols � and �, and were fit, via the nonlinear least-squares fitting (NLSF) utility of Origin 6.0, 
to an exponential decay function given by yi = âc1 − �� ���¸;(�¢) ���¸;(ë)Â f. For the line (⎯⎯⎯⎯) 
pertaining to the fit, δ = 0.09954 = log10(4/υ), where υ = 3.18068, and where the factor 
log10(4/υ) will be used to obtain a convenient form of an equation (Equation 159a) with which to 
fit the high-replicate log10(Ai) versus log10(mi) data. 
 
Figure 85 shows the line that pertains to Inequality 23, and the difference between that line and 
log10(Ai) was fit to obtain the line shown in Figure 86. The fit of the regularly behaving data of 
Figure 86 to yi = âc1 − �� ���¸;(�¢) ���¸;(ë)Â f yields δ = (0.09954 ± 0.00014), with a correlation 
coefficient of R 2 = 0.99958 and a reduced chi-squared statistic of χ 2/DoF = 2.4922E-7. (A 
discussion of such NLSF results begins prior to Equation 30.) With respect to mi, the data 
included in the fit range from mi=1 = 1 to mi=25 = 1000. With respect to ni, the data included in 
the fit range from ni=25 = 195,000 to ni=1 = 195,000,000. The function yi = 
âc1 − �� ���¸;(�¢) ���¸;(ë)Â f, simplifies to yi = âc1 − 10� ���¸;(�¢)f = δ(mi – 1)/mi. 
 
Combining the line for which δ = log10(4/υ) in Figure 86 with the line pertaining to Inequality 23 
in Figure 85 yields an equation, 

logmx(ÑA) = logmx ç� 14éËA� ô4�õ�¢�m�¢ è, 
(159a) 
that fits the log10(Ai) versus log10(mi) data in the region where Inequality 23 holds (Figure 87), 
which it does among roughly the same treatment groups, i = 1 to i = 32, that show the least 
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deviation of κi from the expected value of n1/mi = ni in Figure 83. For treatment groups i = 1 to i 
= 32, ni ranges from n32 = 32,500 to n1 = 195,000,000, while mi ranges from m1 = 1 to m32 = 
6,000. 
 
As mi approaches mi=1 = 1 from above, the results obtained from Equation 159a increasingly 
resemble those of 

lim�¢→m logmx(ÑA) = logmx � 14éËA�, 
(159b) 
which is identical to the logarithmic form of Inequality 23 shown in Figure 85. 
 
In Equation 159a, as mi approaches infinity, the factor [4 �Â ]÷¢½¸÷¢  of Equation 159a approaches 
4/υ. Thus, as mi approaches infinity (Equations 21 and 22), the results obtained from Equation 
159a increasingly resemble those of 

lim�¢→Ú logmx(ÑA) = logmx � 1�éËA�, 
(159c) 
which gives the hypothetical values that log10(Ai) approaches asymptotically as mi increases to 
ever larger values. 
 
Figure 87 shows log10(Ai) versus log10(mi), obtained from the Ai versus mi data of Table 43, and 
the lines given by the right-hand sides of Equations 159a, 159b and 159c. 
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Figure 87. The log10(Ai) versus log10(mi) data (� for treatment groups i = 1 to i = 32, which 
show the least deviation of κi from the expected value of n1/mi = ni in Figure 83; × for treatment 
groups i = 33 to i = 64, which show the greatest deviation of κi from the expected value of n1/mi 
= ni in Figure 83), obtained from the Ai versus mi data of Table 43, and the lines given by the 
right-hand sides of Equations 159a (∙∙∙∙∙∙∙), 159b (⎯⎯⎯⎯) and 159c (⎯⎯⎯⎯), which are 
logmxcp1 4éËAÂ q[4 �Â ])�¢�m �¢Â *f, logmxc1 4éËAÂ f and logmxc1 �éËAÂ f, respectively. Where υ 
appears, it is set equal to 3.18068 (Figure 86). For treatment groups i = 1 to i = 32 (�), among 
which Inequality 23 always holds, ni ranges from n32 = 32,500 to n1 = 195,000,000, while mi 
ranges from m1 = 1 to m32 = 6,000. For treatment groups i = 33 to i = 64 (×), among which 
Inequality 23 does not always hold, ni ranges from n33 = 30,000 to n64 = 5, while mi ranges from 
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m33 = 6,500 to m64 = 39,000,000. 
 
Figure 87 might be viewed as a specific instance of a general test that could be applied to any set 
of treatment groups, such as the set to which Table 43 pertains, that are characterised by a 
treatment-group-specific population of random variables per replicate. In such a test, where a 
plot of log10(Ai) versus log10(mi) data closely follows a plot of logmxcp1 4éËAÂ q[4 �Â ])�¢�m �¢Â *f 
versus log10(mi) over a broad range of population-per-replicate values, mi, the treatment groups, 
i, within such a range can be judged to have a sufficient number of replicates, ni, to ensure that 
any statistics calculated for those treatment groups will approach the values that would be 
expected as ni approaches infinity. 
 
Pair-wise comparisons of the Ai values for the 4 treatment groups with ni values ≥ 195,000 
 
Of from the 64 treatment groups presented in Table 43, four representative treatment groups, i = 
1, i = 8, i = 18 and i = 25, were selected from those that were judged to have a sufficient number 
of replicates, ni, to ensure that any statistics calculated would approach the values that would be 
expected as ni approaches infinity. Treatment groups i = 1 to i = 32 were deemed to have 
sufficient replicates to fit this criterion, as for these treatment groups, the plot of the log10(Ai) 
versus log10(mi) data (Figure 87) closely follows the plot of logmxcp1 4éËAÂ q[4 �Â ])�¢�m �¢Â *f 
versus log10(mi) (Equation 159a) over a broad range of population-per-replicate values, mi.  
 
For each of four selected treatment groups, i = 1, i = 8, i = 18 and i = 25, statistical analysis was 
applied to the set of all mean values, Ai,h, calculated for each replicate using Equation 18. Due to 
the high population of replicates within each of these four treatment groups, values of Ai,h and 
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related statistics pertaining to individual replicates were deemed too numerous to tabulate. For 
treatment groups, i = 1, i = 8, i = 18 and i = 25, the respective number of replicates is n1 = 
195,000,000, n8 = 19,500,000, n18 = 1,950,000 and n 25 = 195,000. 
 
To quantify the statistical significance of a difference between any two treatment groups, a 
Bonferroni-adjusted t-test (2-tailed) was applied to pair-wise comparisons of the population 
means from different treatment groups. Confidence intervals about the population means were 
determined and graphed to illustrate selected results from the Bonferroni-adjusted t-tests. (For 
details, see: One-way analyses of variance (ANOVA), Bonferroni adjusted t-test (2-tailed), and 
confidence intervals about mean values.) 
 
Treatment-group-independent statistical parameters are those that apply to the set of all 
treatment groups being analysed. Table 46 lists treatment-group-independent the statistical 
parameters that would be dimensionless no matter what dimensions might apply to the mean 
values being compared. Table 47 lists the treatment-group-independent statistical parameters 
for which the dimensions depend on the dimensions of the mean values being compared. Table 
48 lists descriptive statistical parameters that apply to each treatment group individually. Table 
49 lists the comparative statistical parameters that apply to the (1 - α)100% confidence interval 
about each pair-wise mean difference, Δμij (Equation 96), between treatment groups. Table 50 
lists the comparative statistical parameters that constitute the �∆a¢O-based (1 - α)100% 
confidence interval about the mean, μi, of each treatment group. Figure 88 shows, as a function of 
Pi = mi, the �∆a¢O-based (1 - α)100% confidence interval about the mean as −Îac,c»  < μP < +Îac,c½  
(Table 50), along with the fit (Equation 159a; Figure 87). 
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The treatment-group-wide mean value, Ai, of Equation 19 is identical to the treatment-group-
wide mean value, µi of Equation 85 in the section describing Bonferroni adjusted t-test (One-way 
analyses of variance (ANOVA), Bonferroni adjusted t-test (2-tailed), and confidence intervals 
about mean values). Furthermore, just prior to Equation 96, which is also in the section 
describing Bonferroni adjusted t-test, Ai was defined as the true value that must underlie each 
observation, Ai,h, within treatment group i. Finally, in Equation 105a of the section presenting the 
comparisons between different treatment groups of the simulated AUC results (Statistical 
analysis of AUC simulation results for any given time of analysis, tϵ), Ai was redefined as the 
expectation value of each observation, Ai,h, within treatment group i. Thus, to avoid confusion 
between the mean and either the true or the expectation value of each observation within a 
treatment group, and to present parameters in the same notation as that used in section 
describing the Bonferroni adjusted t-test, μi is used in place of Ai in the remainder of this section. 
Similarly, to present parameters in the same notation as that used in section describing the 
Bonferroni adjusted t-test, Pi is used to denote mi in this section, but frequent reminders are 
given that Pi = mi in this context. 
 
Table 49 gives the value of the Bonferroni adjusted t-test (2-tailed), pBonf, for each pair-wise 
mean difference, Δμij at tϵ = t51. Less than (1 - α)100% confidence is accorded to the difference 
between any two means for which the comparison yields pBonf > α, and by this measure, with α = 
0.05, each mean value, μP (identical to μi), is considered distinguishable from every other mean 
value, as each pair-wise comparison yields pBonf < α. Likewise, in Table 50 and in Figure 88, less 
than (1 - α)100% confidence is accorded to the difference between any two means with 
overlapping confidence intervals, and by this measure as well, each mean value is considered 
distinguishable from every other mean value. 
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Statistic notation value 
total population (of all replicates) Ntot 216,645,000 
number of treatment groups g 4 
degrees of freedom of error [Ntot - g] 216,644,996 
degrees of freedom of treatment [g - 1] 3 
pair-wise between-group comparisons q 6 
significance level α 0.05 
Bonferroni-adjusted significance level [α/2q] 4.16667E--3 
upper critical value of Student’s t-distribution t([α/2q],[Ntot - g]) 3.76142 
Table 46. Treatment-group-independent the statistical parameters that would be dimensionless 
no matter what dimensions might apply to the mean values being compared. These parameters 
apply to the set of all treatment groups, i = 1, i = 8, i = 18 and i = 25, being analysed. The total 
population is given by Equation 84. The upper critical value of Student’s t-distribution at [Ntot - g] 
degrees of freedom and a Bonferroni-adjusted significance level of [α/2q] for a two-sided test is 
t([α/2q],[Ntot - g]), which is applied first to the (1 - α)100% confidence interval about each Δμij in 
Equation 96, and is applied later to the �∆a¢O-based (1 - α)100% confidence interval about μi in 
Equations 99 and 100. 
 
Equation Statistic value 87 raw sum Atot 5.07097E7 

88 raw sum of squares Asq 1.64771E7 
89 mean of the raw sum squared μsq 1.18696E7 
90 correction term of the mean μcorr 1.23738E7 
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91 mean square error within groups eMSw 1.89310E-2 
92 mean of the sum of squares of treatments TMSb 1.68101E5 

Table 47. Treatment-group-independent statistical parameters for which the dimensions depend 
on the dimensions of the mean values being compared. These parameters apply to the set of all 
treatment groups, i = 1, i = 8, i = 18 and i = 25, being analysed. The ratio of two of these 
statistics, TMSb and eMSw, yield F = TMSb/eMSw = 8.87548E6. The results in this table are calculated 
using the replicate observations, which are the sets of all Ai,h that are too numerous to tabulate. 
 
treatment group Population per replicate 

replicates mean standard deviation �a¢-based (1 - α)100% confidence interval 
i Pi = mi ni μi = Ai σi −Îa¢ +Îa¢ 

1 100 195,000,000 2.49998E-1 1.44407E-1 2.49961E-1 2.50035E-1 
8 101 19,500,000 9.72829E-2 4.32366E-2 9.71657E-2 9.74001E-2 

18 102 1,950,000 3.13100E-2 1.36187E-2 3.09393E-2 3.16807E-2 
25 103 195,000 9.85200E-3 4.35057E-3 8.67974E-3 1.10243E-2 

Table 48. The descriptive statistics, μi (Equation 85), σi (Equation 106) and, with α = 0.05 
(Equation 98), the 95% confidence interval about μi, ±Îa¢ , determined using the standard error 
of the mean, �a¢  (Equation 97). In turn, the standard error of the mean was determined using 
eMSw (Table 47). Each statistic in this table applies to just one treatment group. 
 

Pi ni Pj nj Δμij = μi – μj �∆a¢O  -Î∆a¢O  +Î∆a¢O  pBonf 
100 n1/100 101 n1/101 1.52715E-1 3.26865E-5 1.52592E-1 1.52838E-1 < 1E-6 
100 n1/100 102 n1/102 2.18688E-1 9.90451E-5 2.18316E-1 2.19061E-1 < 1E-6 
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100 n1/100 103 n1/103 2.40146E-1 3.11809E-4 2.38973E-1 2.41319E-1 < 1E-6 
101 n1/101 102 n1/102 6.59729E-2 1.03364E-4 6.55841E-2 6.63616E-2 < 1E-6 
101 n1/101 103 n1/103 8.74309E-2 3.13208E-4 8.62528E-2 8.86090E-2 < 1E-6 
102 n1/102 103 n1/103 2.14580E-2 3.26865E-4 2.02286E-2 2.26875E-2 < 1E-6 
Table 49. Comparative statistical parameters, for which Pi = mi, Pj = mj and n1 = 195,000,000. 
Each statistic applies to just one pair-wise comparison between two treatment groups. Equation 
95 gives the critical value, Dc[vA − 1], pvd − 1qf = ∆a¢O ë∆i¢O, for each pair-wise comparison. The 
probability obtained from the Bonferroni adjusted t-test (2-tailed) is pBonf. Less than (1 - α)100% 
confidence is accorded to the difference between any two means for which the comparison yields 
pBonf > α. Values of pBonf that lie below 1 – p(-5σ, 5σ) ≃ 1E-6 (Figure 2; Equation 26) are 
tabulated as pBonf < 1E-6. 
 
i Pi  +Îac,c½ = +Îa¢,O  −Îac,c» = −Îa¢,O   i Pi  −Îac,c½ = −Îa¢,O  +Îac,c» = +Îa¢,O  
1 100 +Îa¢·¸,O·�  −Îa¢·¸,O·´Q  1 100   
8 101 +Îa¢·�,O·¸� −Îa¢·�,O·¸   8 101   

18 102 +Îa¢·¸�,O·� −Îa¢·¸�,O·�  18 102   
25 103 +Îa¢·´Q,O·¸ −Îa¢·�,O·¸�  25 103   
Table 50a. The identities of the �∆a¢O-based (1 - α)100% confidence interval about μi, which are 
expressed as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ , that are shown in Figure 88. 
In this table, Pi = mi. 
 
i Pi  +Îac,c½  −Îac,c»   i Pi  −Îac,c½  +Îac,c»  
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1 100 2.50585E-1 2.49937E-1  1 100   
8 101 9.73444E-2 9.70885E-2  8 101   

18 102 3.15044E-2 3.06953E-2  18 102   
25 103 1.04667E-2 9.26557E-3  25 103   
Table 50b. Selected values of the �∆a¢O-based (1 - α)100% confidence interval about μi, which are 
expressed as either −Îac,c½  < μP < +Îac,c»  or −Îac,c»  < μP < +Îac,c½ . These are the confidence 
intervals presented graphically in Figure 88. Less than (1 - α)100% confidence is accorded to the 
difference between any two means with overlapping confidence intervals. In this table, Pi = mi. 
 

j and nj apply to -Îa¢O  i and ni apply to both -Îa¢O  and +Îa¢O  j and nj apply to +Îa¢O  
j nj -Îa¢O  μi i Pi ni fitted value +Îa¢O  j nj 
8 10-1n1 2.49937E-1 2.49998E-1 1 100 10-0n1 2.50000E-1 2.50585E-1 25 10-3n1 

18 10-2n1 9.70885E-2 9.72829E-2 8 101 10-1n1 9.71686E-1 9.73444E-2 1 10-0n1 
25 10-3n1 3.06953E-2 3.13100E-2 18 102 10-2n1 3.13678E-2 3.15044E-2 8 10-1n1 

1 10-0n1 9.26557E-3 9.85200E-3 25 103 10-3n1 9.93986E-2 1.04667E-2 18 10-2n1 
Table 50c. The fitted value (Figure 87; Equation 159a); the mean, μi; and the �∆a¢O-based 
(1 - α)100% confidence interval about μi, −Îa¢,O  < μi < +Îa¢,O , shown in Figure 88. These 
parameters are plotted as a function of Pi = mi in Figure 88. The fit is given by 
p1 4éËAÂ q[4 �Â ])�¢�m �¢Â *, which is the antilog of the fit (Equation 159a) presented in Figure 87. 
The value of υ obtained from the fit of log10(Ai) - log10(0.25/mi0.5) versus log10(mi) in Figure 86 
was 3.18068, which is the value of υ used here. In this table, Pi = mi and n1 = 195,000,000. 
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Figure 88a. The fit (∙∙∙∙∙∙∙), given by p1 4éËAÂ q[4 �Â ])�¢�m �¢Â *, which is the antilog of the fit 
(Equation 159a) presented in Figure 87; and the �∆a¢O-based (1 - α)100% confidence interval 
about μP = μi, −Îac,c»  (�⎯⎯⎯) < μP (�) < +Îac,c½  (⎯⎯⎯�). Table 50 lists the values of the 
confidence intervals, the values of μi and the values of the fit for each treatment group. The value 
of υ obtained from the fit of log10(Ai) - log10(0.25/mi0.5) versus log10(mi) in Figure 86 was 3.18068, 
which is the value of υ used here. 
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Figure 88b. A detail showing, for treatment group 1 (P1 = m1 = 1), the fit (∙∙∙∙∙∙∙), given by 
p1 4éËAÂ q[4 �Â ])�¢�m �¢Â *, which is the antilog of the fit (Equation 159a) presented in Figure 87; 
and the �∆a¢O-based (1 - α)100% confidence interval about μP = μi, −Îac,c»  (�⎯⎯⎯) < μP (�) < 
+Îac,c½  (⎯⎯⎯�). This plot is presented with both axes on a normal scale. Table 50 lists the values 
of the confidence intervals, the values of μi and the values of the fit for this treatment group and 
the other three treatment groups. The value of υ obtained from the fit of log10(Ai) - 
log10(0.25/mi0.5) versus log10(mi) in Figure 86 was 3.18068, which is the value of υ used here. 
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Figure 88c. A detail showing, for treatment group 8 (P8 = m8 = 10), the fit (∙∙∙∙∙∙∙), given by 
p1 4éËAÂ q[4 �Â ])�¢�m �¢Â *, which is the antilog of the fit (Equation 159a) presented in Figure 87; 
and the �∆a¢O-based (1 - α)100% confidence interval about μP = μi, −Îac,c»  (�⎯⎯⎯) < μP (�) < 
+Îac,c½  (⎯⎯⎯�). This plot is presented with both axes on a normal scale. Table 50 lists the values 
of the confidence intervals, the values of μi and the values of the fit for this treatment group and 
the other three treatment groups. The value of υ obtained from the fit of log10(Ai) - 
log10(0.25/mi0.5) versus log10(mi) in Figure 86 was 3.18068, which is the value of υ used here. 
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Figure 88d. A detail showing, for treatment group 18 (P18 = m18 = 100), the fit (∙∙∙∙∙∙∙), given by 
p1 4éËAÂ q[4 �Â ])�¢�m �¢Â *, which is the antilog of the fit (Equation 159a) presented in Figure 87; 
and the �∆a¢O-based (1 - α)100% confidence interval about μP = μi, −Îac,c»  (�⎯⎯⎯) < μP (�) < 
+Îac,c½  (⎯⎯⎯�). This plot is presented with both axes on a normal scale. Table 50 lists the values 
of the confidence intervals, the values of μi and the values of the fit for this treatment group and 
the other three treatment groups. The value of υ obtained from the fit of log10(Ai) - 
log10(0.25/mi0.5) versus log10(mi) in Figure 86 was 3.18068, which is the value of υ used here.  
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Figure 88e. A detail showing, for treatment group 25 (P25 = m25 = 1000), the fit (∙∙∙∙∙∙∙), given by 
p1 4éËAÂ q[4 �Â ])�¢�m �¢Â *, which is the antilog of the fit (Equation 159a) presented in Figure 87; 
and the �∆a¢O-based (1 - α)100% confidence interval about μP = μi, −Îac,c»  (�⎯⎯⎯) < μP (�) < 
+Îac,c½  (⎯⎯⎯�). This plot is presented with both axes on a normal scale. Table 50 lists the values 
of the confidence intervals, the values of μi and the values of the fit for this treatment group and 
the other three treatment groups. The value of υ obtained from the fit of log10(Ai) - 
log10(0.25/mi0.5) versus log10(mi) in Figure 86 was 3.18068, which is the value of υ used here. 
 
The results given in Tables 46 to 50 and presented in Figure 88 show that the four treatment 
groups, i = 1, i = 8, i = 18 and i = 25, can be distinguished from each other with a great deal of 
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confidence, and also show that a fit to the mean values of the observations for these groups yields 
values that lie within the confidence intervals about the means. Thus, the mean values can be 
considered to be very precise, and the fitting results can be considered to be both precise and 
accurate. The results prove nothing (Kupferberg, 1965) regarding the accuracy of the mean 
values of the observations for these groups, however. 
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